Skip to main content
Log in

Early presence/introduction of African and East Asian millets in India: integral to traditional agriculture

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

The spread of millets after domestication to different parts of the world, particularly to India, which cultivates the maximum number of millet crop species as staple food has been under debate. Common literature document’s introduction of exotic millets (pearl millet, sorghum, finger millet, proso millet, kodo millet, and foxtail millet) to India either during medieval or colonial period. However, recent reviews based on archaeobotanical evidence demonstrate their presence much early, in ancient times. The present mini review discusses this aspect with additional evidence from more archaeobotanical remains found in different parts of the Indian Subcontinent, phylogenetic studies, and linguistic and historical references. Ancient literature corroborates the presence of exotic millets in pre-historic times in India with the possibility of post-domestication evolution of feral or semi-domesticate types and cultigens, generating additional genetic diversity. Considering the conflicting views on the spread of millets and increasing global interest as nutritive cereals there is a need for further evolutionary investigations using both conventional and molecular techniques to accessions from different parts of the world to trace the footprints of genetic diversity and cultigens. Such studies, besides resolving the evolutionary issues shall help identify regions of useful genetic diversity that can be used for genetic improvement of millet crops.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Achaya KT. The illustrated food of India A–Z. Oxford University Press, New Delhi, 2009; ISBN-13: 9780195698442

  2. Aldrich PR, Doebley J. Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theor Appl Genet. 1992;85(2–3):293–302.

    Article  PubMed  CAS  Google Scholar 

  3. Aldrich PR, Doebley J, Schertz KF, Stec A. Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor Appl Genet. 1992;85(4):451–60.

    Article  PubMed  CAS  Google Scholar 

  4. Appa R, Prasada Rao K, Mengesha M, Reddy V. Geographical distribution, diversity and gap analysis of east African sorghum collection conserved at the ICRISAT Genebank. Genet Resour Crop Evol. 1996;43(6):559–67.

    Google Scholar 

  5. Baltensperger DD. Foxtail and proso millet. In: Janick J, editor. Progress in new crops. Alexandria: ASHS Press; 1996. p. 182–90.

    Google Scholar 

  6. Beldados A, Manzo A, Murphy C, Stevens CJ, Fuller DQ. Evidence of sorghum cultivation and possible pearl millet in the second millennium BC at Kassala, Eastern Sudan. In: Mercuri AM, D’Andrea AC, Fornaciari R, Höhn A, editors. Plants and people in the African past. Cham: Springer; 2018. p. 503–28.

    Chapter  Google Scholar 

  7. Bhava Mishra (X edition in Hindi) Bhava Prakash Nighantu (Indian Materia Medica). Commentary by Chunekar KC, Pandey GS, editor. Chaukhambha Bharti Academy, Varanasi. (ca.1600 AD) 1995.

  8. Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, et al. Massive sorghum collection genotyped with SSR Markers to enhance use of global genetic resources. PLoS ONE. 2013;8(4): e59714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bisht MS, Mukai Y. Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet. 2001;102:825–32.

    Article  CAS  Google Scholar 

  10. Bisht MS, Mukai Y. Mapping of rDNA on the chromosomes of Eleusine species by fluorescence in situ hybridization. Genes Genet Syst. 2000;75:343–8.

    Article  PubMed  CAS  Google Scholar 

  11. Blench R. The movement of cultivated plants between Africa and India in prehistory. In: Neumann K, Butler A, Kahlheber S, editors. Food, fuel and fields progress in African archaeobotany, Africa Praehistorica 15 Heinrich-Barth Institute Cologne; 2003. p. 273–292.

  12. Boivin N, Fuller DQ. Shell middens, ships and seeds: exploring coastal subsistence, maritime trade and the dispersal of domesticates in and around the ancient Arabian Peninsula. J World Prehist. 2009;22(2):113–8.

    Article  Google Scholar 

  13. Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell. 2010;22:2537–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Burgarella C, Cubry P, Kane NA, Varshney RK, Mariac C, Liu X, et al. A western Sahara origin of African agriculture inferred from pearl millet genomes. Nat Ecol Evol. 2018;2:1377–80.

    Article  PubMed  Google Scholar 

  15. Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, et al. Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet. 2005;111:23–30.

    Article  PubMed  CAS  Google Scholar 

  16. Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, et al. Community resources and strategies for association mapping in Sorghum. Crop Sci. 2008;48:30–40.

    Article  Google Scholar 

  17. Choudhary P, Shukla P. Muthamilarasan Mehanathan genetic enhancement of climate-resilient traits in small millets: a review. Heliyon. 2023;9(4): e14502.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cui YX, Xu GW, Magill CW, Schertz KF, Hart GE. RFLP based assay of Sorghum bicolor (L) Moench genetic diversity. Theor Appl Genet. 1995;90:787–96.

    Article  PubMed  CAS  Google Scholar 

  19. Dahlberg JA, Wasylikowa K. Image and statistical analyses of early sorghum remains (8000 BP) from the Nabta Playa archaeological site in the western desert, southern Egypt. Veg Hist Archaeobot. 1996;5:293–9.

    Article  Google Scholar 

  20. De Candolle A. Plants cultivated for their seeds. In: Origin of cultivated plants, 2nd Edition, International Scientific Series Vol. XLIX, Kegan Paul Trench & Co., London. 1886. p. 376–384. https://archive.org/download/originofcultivat00cand/originofcultivat00cand.pdf

  21. de Oliviera AC, Richter T, Bennetzen JL. Regional and racial specificities in sorghum germplasm assessed with DNA markers. Genome. 1996;39:579–87.

    Article  Google Scholar 

  22. de Wet JMJ, Prasada Rao KE, Brink DE, Mengesha MH. Systematics and evolution of Eleusine coracana (Gramineae). Am J Bot. 1984;71(4):550–7.

    Article  Google Scholar 

  23. de Wet JMJ, Harlan JR. The origin and domestication of Sorghum bicolor. Econ Bot. 1971;25:128–35.

    Article  Google Scholar 

  24. de Wet JMJ, Harlan JR. Weeds and domesticates: Evolution in the man-made habitat. Econ Bot. 1975;29:99–107.

    Article  Google Scholar 

  25. de Wet JMJ. Pearl millet, Pennisetum glaucum. In: Smartt J, Simmonds NW, editors. Evolution of crop plants 2nd edn. Longman Singapore Pub. Ltd., Singapore; 1995. p. 156–159.

  26. de Wet JMJ. Systematics and evolution of sorghum sect. Sorghum (Gramineae). Am J Bot. 1978;65(4):477–84.

    Article  Google Scholar 

  27. Deu M, Hamon P, Chantereau J, Dufour P, D’Hont A, Lanaud C. Mitochondrial DNA diversity in wild and cultivated sorghum. Genome. 1995;38:635–45.

    Article  PubMed  CAS  Google Scholar 

  28. Diao X, Jia G. Origin and domestication of foxtail millet. Genet Genom Setaria. 2017. https://doi.org/10.1007/978-3-319-45105-34.

    Article  Google Scholar 

  29. Dida MM, Wanyera N, Harrison Dunn ML, Bennetzen JL, Devos KM. Population structure and diversity in finger millet (Eleusine coracana) germplasm. Tropical Plant Biol. 2008;1(2):131–41.

    Article  Google Scholar 

  30. Doggett H, second ed. Longman, Burnt Mill, Harlow, Essex, England; 1988. p. 512.

  31. Doust A. Architectural evolution and its implications for domestication in grasses. Ann Bot. 2007;100:941–50.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Doust AN, Kellogg EA, Devos KM, Bennetzen JL. Foxtail millet: a sequence-driven grass model system. Plant Physiol. 2009;149:137–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Frachetti MD, Spengler RN, Fritz GJ, Mar’yashev AN. Earliest direct evidence for broomcorn millet and wheat in the Central Eurasian steppe region. Antiquity. 2010;84:993–1010.

    Article  Google Scholar 

  34. Fuller DQ, Stevens CJ. Sorghum domestication and diversification: a current archaeobotanical perspective. In: Mercuri A, D’Andrea A, Fornaciari R, Höhn A, editors. Plants and people in the African past. Cham: Springer; 2018. p. 427–52.

    Chapter  Google Scholar 

  35. Fuller DQ. African crops in prehistoric South Asia: a critical review. In: Neumann K, Butler A, Kahlheber S, editors. Food, fuel and fields: progress in African Archaeobotany. Africa Praehistorica 15 Heinrich-Barth Institute Cologne; 2003. p. 239–271.

  36. Fuller DQ. Fifty years of archaeobotanical studies in India: laying a solid foundation. In: Korisettar R, Settar S, editors. Indian archaeology in retrospect; III: archaeology and interactive disciplines. New Delhi, Oxford: IBH; 2000. p. 317–90.

    Google Scholar 

  37. Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot. 2001;88:1993–2012.

    Article  PubMed  CAS  Google Scholar 

  38. Greenway PJ. Origin of some East African food plants. East Afri Agric J. 1945;10:177–80.

    Google Scholar 

  39. Haaland R. A socio-economic perspective on the transition from gathering to cultivation and domestication: a case study of Sorghum in the Middle Nile Region. In: Pwiti G, Soper R, editors. Aspects of African archeology association of prehistory and related studies, University of Zimbabwe Publication Harare; 1996. p. 391–400.

  40. Haaland R. The puzzle of the late emergence of the domesticated sorghum in the Nile Valley. In: Gosden Ch, Hather H, editors. The prehistory of food. Appetites for change. London; 1999. p. 397–418.

  41. Harlan JR, Stemler ABL. The races of sorghum in Africa. In: Harlan JR, de Wet JMJ, Stemler ABL, editors. Origins of African plant domestication. Mouton Publishers. The Hague; 1976. p. 465–478.

  42. Harlan JR. Indigenous African agriculture. In: Wesley Cowan C, Benco NL, Watson PJ, editors. The origins of agriculture: an international perspective. Washington, DC: Smithsonian; 1992. p. 59–70.

    Google Scholar 

  43. Hawkes J. The first great civilizations. Middlesex: Penguin Books, Harmondsworth; 1973.

    Google Scholar 

  44. Herman CF. Harappan Gujarat: the archeology-chronology connection. Paltorient. 1996;22:77–112.

    Article  Google Scholar 

  45. Hilu KW, De Wet JMJ. Domestication of Eleusine coracana. Eco Bot. 1976;30(3):199–208.

    Article  Google Scholar 

  46. Hilu KW, DeWet JMJ, Harlan JR. Archaeobotanical studies of Eleusine coracana ssp. coracana (finger millet). Am J Bot. 1979;66(3):330–3.

    Article  Google Scholar 

  47. Hunt HV, Vander L, Liu M, Matuzeviciute MG, Colledge S, Jones MK. Millets across Eurasia: chronology and context of early records of the genera Panicum and Seteria from archaeological sites in the old world. Veg Hist Archaeobot. 2008;17(4Suppl):5–18.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Joshi RP, Jain AK, Malhotra N and Kumari M. Origin, domestication and spread. In: Millets and pseudo cereals genetic resources and breeding advancements. Woodhead Publishing Series in Food Science, Technology and Nutrition; 2021. p. 33–38.

  49. Kajale MD. Ancient grains from excavations at Nevasa (1959–60). Maharashtra Geophytol. 1977;7:98–106.

    Google Scholar 

  50. Kajale MD. Current status of Indian paleoethnobotany: Introduced and indigenous food plants with a discussion of the historical and evolutionary development of Indian agriculture and agricultural systems in general. In: Renfrew JM, editor. New light on early farming. Edinburgh: Edinburgh University Press; 1991. p. 155–89.

    Google Scholar 

  51. Kajale MD. On the botanical findings from excavations at Daimabad, a chalcolithic site in Western Maharashtra. India Curr Sci. 1977;46:818–9.

    Google Scholar 

  52. Kajale MD. Plant economy. In: Dhavalikar MK, Sankali HD, Ansari ZD, editors. Excavations at Inamgaon; 1988 I, ii:727–820.

  53. Kimber CT. Origin of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederiksen RA, editors. Sorghum: origin, history, technology and production. New York: Wiley; 2000. p. 3–98.

    Google Scholar 

  54. Krishna KR, Morrison KD. History of South Indian agriculture and agroecosystems. In: South Indian agroecosystems: nutrient dynamics and productivity. Brown Walker Press; 2009. p. 1–51.

  55. Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology. 2013. Early Online: 1–16 © 2012 Informa Healthcare USA. https://doi.org/10.3109/07388551.2012.716809

  56. Le Thierry DM, Pan Maud MO, Toupance B, Sarr A. Assessment of genetic relationships between Setaria italica and its wild relatives S. viridis using AFLP marker. Theor Appl Genet. 2000;100:1061–6.

    Article  Google Scholar 

  57. Li P, Brutnell TP. Setaria viridis and Setaria italica, model genetic systems for the panicoid grasses. J Exp Bot. 2011;62:3031–7.

    Article  PubMed  CAS  Google Scholar 

  58. Li Y, Wu SZ. Traditional maintenance and multiplication of foxtail millet [Setaria italica (L.) P. Beauv] landraces in China. Euphytica. 1996;87:33–8.

    Article  Google Scholar 

  59. Lu HY, Zhang JP, Liu KB, Wu NQ, Li YM, Zhou KS, Ye ML, Zhang TY, Zhang HJ, Yang XY, et al. Earliest domestication of broomcorn millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA. 2009;106(18):7367–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, et al. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun. 2013;4(2320):1–9.

    Google Scholar 

  61. Mann JA, Kimber CT, Miller FR. The origin and early cultivation of sorghums in Africa. Texas Agric Exp Stn Bull. 1983;1454:56.

    Google Scholar 

  62. Meadow R. The origins and spread of agriculture and pastoralism in northwestern South Asia. In: Harris DR, editor. The origins and spread of agriculture and pastoralism in Eurasia. London: UCL Press; 1996. p. 390–412.

    Google Scholar 

  63. Morden WC, Doebley J, Schertz KF. Allozyme variation among the spontaneous species of sorghum, section sorghum. Theor Appl Genet. 1990;80:296–304.

    Article  PubMed  CAS  Google Scholar 

  64. Padulosi S, Bhag M, Bala Ravi S, Gowda J, Gowda KTK, Shantha-kumar G, Yenagi N, Dutta M. Food security and climate change: role of plant genetic resources of minor millets. Indian J Plant Genet Resour. 2009;22:1–16.

    Google Scholar 

  65. Pokharial AK, Kharakwal JS, Srivastava A. Archaeobotanical evidence of millets in the Indian Subcontinent with some observations on their role in the Indus Civilization. J Archaeol Sci. 2014;42:442–55.

    Article  Google Scholar 

  66. Porteres R. African cereals: Elusine, Fonio, Black Fonio, Teff, Brachiaria, Paspalum, Pennisetum and African rice. In: Harlan JR, de Wet JMJ, Stemler ABL, editors. Origin of African plant domestication (Mouton); 1976. p. 409–452.

  67. Possehl GL. African millets in South Asian Protohistory. In: Jacobson J, editor. Studies in the archeology of India and Pakistan. New Delhi: Oxford & IBH Publication; 1986. p. 237–56.

    Google Scholar 

  68. Purseglove JWM. Eleusine coracana, Pennisetum americanum (Gramineae). In: Simonds NW, editor. Evolution of crop plants. London: Longman; 1976.

    Google Scholar 

  69. Rao SR. with contribution from Lal BB, Nath B, Gosh SS, Lal K. Excavation at Rangpur and other exploration in Gujarat. Bulletin Archaeol. Survey of India 1963; 18/19:5–207.

  70. Rowley-Conwy PA, Deakin WJ, Shaw CW. Ancient DNA from archeological sorghum (Sorghum bicolor) from Qasr Ibrim, Nubia, implications for domestication and evolution and a review of the archeological evidence. Sahara Prehist Hist Sahara. 1997;9:23–35.

    Google Scholar 

  71. Saraswat KS, Pokharia AK. Paleoethnobotanical investigations at early Harappan Kunal. Pragdhara. 2003;13:105–39.

    Google Scholar 

  72. Saraswat KS, Sharma NK, Saini DC. Plant economy at ancient Narhan (ca. 1300 BC-300/400 AD). In: Singh P, editor. Excavations at Narhan (1984–1989) Banaras Hindu University Varanasi; 1994. p. 255–346.

  73. Saraswat KS. Agricultural background of the early farming communities in the Middle Gangetic Plain. Pragdhara. 2005;15:145–77.

    Google Scholar 

  74. Saraswat KS. Plant economy in ancient Malhar. Pragdhara. 2004;14:137–72.

    Google Scholar 

  75. Saraswat KS. Plant economy of early farming communities. In: Singh BP, editor. Early farming communities of the Kaimur (Excavation of Senuwar). Jaipur: Publication Scheme; 2004. p. 416–535.

    Google Scholar 

  76. Saraswat KS. Plant economy of late Harappan at Hulas. Purattatva (1992–93). 1993;23:1–12.

    Google Scholar 

  77. Scheuring JF. Evidence for the Indian origins for African sorghum. Discussion paper for origin of agriculture seminar. Plant geography laboratory, geography department, Texas A & M University, College station; 1979.

  78. Shobana S, Krishnaswamy K, Sudha V, Malleshi NG, Anjana RM, Palaniappan L, Mohan V. Finger Millet (Ragi, Eleusine coracana L.): A review of its nutritional properties, processing, and plausible health benefits. Adv Food Nutr Res. 1979;69:1–39.

    Google Scholar 

  79. Singh Anurudh K, Nigam SN. Ancient alien crop introductions integral to Indian agriculture: an overview. Proc Indian Natn Sci Acad. 2017;83:549–68.

    Google Scholar 

  80. Singh Anurudh K. Agricultural crop diversity: status, challenges, and solutions. In: Kaur S, Batish DR, Singh HP, Kohli RK, editors. Biodiversity in India: status, issues and challenges. Singapore: Springer; 2022. p. 219–42. https://doi.org/10.1007/978-981-16-9777-7_11.

    Chapter  Google Scholar 

  81. Smartt J, Simmonds NW, editors. Evolution of crop plants. London: Longman Group UK; 1995. p. 531.

    Google Scholar 

  82. Smith CW, Frederiksen RA. History of cultivar development in the United States: from ‘memoirs of A.B. Maunder-sorghum breeder. In: Smith CW, Frederiksen RA, editors. Sorghum: origin, history, technology, and production. New York: Wiley; 2000. p. 191–223.

    Google Scholar 

  83. Snowden JD. The cultivated races of sorghum. London: Adlard and Son Ltd.; 1936. p. 274.

    Google Scholar 

  84. Sood S, Joshi DC, Kumar CA, Kumar A. Phenomics and genomics of finger millet: current status and future prospects. Planta. 2019;250(3):731–51. https://doi.org/10.1007/s00425-019-03159-6.

    Article  PubMed  CAS  Google Scholar 

  85. Summers RI. Prehistoric settlements in Southern Rhodesia. Cambridge: Cambridge University Press; 1958. p. 335.

    Google Scholar 

  86. Tostain S, Marchais L. Enzyme diversity in pearl millet (Pennisetum glaucum). 2. Africa and India. Theor Appl Genet. 1989;77:634–40.

    Article  PubMed  CAS  Google Scholar 

  87. Vavilov NI. The origin, variation, immunity, and breeding of cultivated plants. Chron Bot 1951; 13:361–4. (Selected)

  88. Venkateswaran K, Muraya M, Dwivedi SL, Upadhyaya HD. Wild sorghums—their potential use in crop improvement. In: Wang Y, Upadhyaya HD, Chittaranjan K, editors. Genetics, genomics, and breeding of sorghum. Florida: CRC Press; 2014. p. 56–89.

    Google Scholar 

  89. Venkateswaran K, Elangovan M, Sivaraj N. Origin, domestication and diffusion of Sorghum bicolor. In: Breeding sorghum for diverse end uses. Woodhead Publishing Series in Food Science, Technology and Nutrition; 2019, p. 15–31.

  90. Vishnu-Mittre, Sharma Aruna C. Ancient plant economy at Daimabad. (Appendix II) In: Dali SA, editor. Daimabad 1976–79. Memoirs of the Archaeological Survey of India, Government of India, Central Publication Branch, Calcutta; 1986. p. 588–627.

  91. Wang RL, Wendel JF, Dekker JH. Weedy adaptation in Setaria spp. I. Isozyme analysis of genetic diversity and population genetic structure in Setaria viridis. Am J Bot. 1995;82:308–17.

    Article  Google Scholar 

  92. Watson AM. Agricultural Innovation in the early Islamic World. Cambridge: Cambridge University Press; 1983. p. 260.

    Google Scholar 

  93. Watt G. editor. A dictionary of the economic products of India. 6 vols. Calcutta: Government of India. Originally published 1889–93.

  94. Weber S, Lehman H, Barela T, Hawks S, Harriman D. Rice or millets: early farming strategies in prehistoric Central Thailand. Archaeol Anthropol Sci. 2010;2(2):79–88.

    Article  Google Scholar 

  95. Weber SA, Fuller DQ. Millets and their role in early agriculture. Pragdhara. 2008;18:69–90.

    Google Scholar 

  96. Weber SA. Out of Africa: the initial impact of millets in South Asia. Curr Anthropol. 1998;39(2):267–74.

    Article  Google Scholar 

  97. Weber SA. Plants and Harappan subsistence: an example of stability and change from Raidi. Boulder: Westview Press; 1991. p. 200.

    Google Scholar 

  98. Wendorf F, Close AE, Schild R, Wasylikowa K, Housley RA, Harlan JR, Krolik H. Saharan exploitation of plants 8000 years b.p. Nature. 1992;359:721–4.

    Article  Google Scholar 

  99. Wigboldus J. Early presence of African millets near the Indian Ocean. In: Reade J, editor. The Indian Ocean antiquity. London, New York: Kegan Paul International/British Museum; 1996. p. 75–86.

    Google Scholar 

  100. Winchell F, Brass M, Manzo A, Beldados A, Perna V, Murphy C, Stevens CJ, Fuller DQ. On the origins and dissemination of domesticated sorghum and pearl millet across Africa and into India: a view from the Butana Group of the Far Eastern Sahel. Afr Archaeol Rev. 2018;35(4):483–505. https://doi.org/10.1007/s10437-018-9314-2.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Winchell F, Stevens CJ, Murphy C, Champion L, Fuller DQ. Evidence for sorghum domestication in fourth millennium BC Eastern Sudan: Spikelet morphology from ceramic impressions of the Butana Group. Curr Anthropol. 2017;58:673–83.

    Article  Google Scholar 

  102. Xu Y, Liu M, Li C, Sun F, Lu P, Meng F, Zhao X, He M, Wang F, Zhu X, Zhao X, Zhou H. Domestication and spread of Broomcorn Millet (Panicum miliaceum L.) Revealed by phylogeography of cultivated and weedy populations. Agronomy. 2019;9(12):835:1-917.

    Article  Google Scholar 

Download references

Funding

No financial or non-financial interests are related to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurudh K. Singh.

Ethics declarations

Conflict of interest

Author declares that there is no conflict of intertest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Umesh C. Lavania; Reviewers: Ram J. Singh, Manoj Prasad

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K. Early presence/introduction of African and East Asian millets in India: integral to traditional agriculture. Nucleus 66, 261–271 (2023). https://doi.org/10.1007/s13237-023-00435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-023-00435-5

Keywords

Navigation