Skip to main content
Log in

Genes involved in the accumulation of starch and lipids in wheat and rice: characterization using molecular and cytogenetic techniques

  • Review
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

This review covers the molecular characterization of starch biosynthetic genes by the Starch group based in CSIRO, Canberra which benefitted enormously from the interactions with Prof Mukai and his group in Osaka. A number of genes involved in starch biosynthesis in wheat were isolated from the D- genome donor of wheat, Aegilops tauschii. These were usually isolated as lambda clones and therefore their location on chromosomes could only be determined with further work. This gap was filled by the cytogenetic work carried out by Prof Mukai’s group. In addition, when larger BAC clones were isolated, it was often possible by cytogenetics to visualize the organization of multiple genes and to confirm and sometimes correct conclusions from sequencing. New planned work in starch and lipid accumulation at Monash Malaysia is briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ainsworth C, Travis M, Clark J. Isolation and analysis of a cDNA clone encoding the small-subunit of ADP-glucose pyrophosphoylase from wheat. Plant Mol Biol. 1993;23:23–33.

    Article  CAS  PubMed  Google Scholar 

  2. Aizono Y, Funatsu M, Fujiki Y, Watanabe M Purification and characterization of rice bran lipase II. Agricultural and Biological Chemistry (Japan). 1976;40:317–24.

    Article  CAS  Google Scholar 

  3. Anai T, Koga M, Tanaka H, Kinoshita T, Rahman S, Takagi Y. Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep. 2003;21:988–92.

    Article  CAS  PubMed  Google Scholar 

  4. Baga M, Nair RB, Repellin A, Scoles GJ, Chibbar RN. Isolation of a cDNA encoding a granule-bound 152 kilodalton starch-branching enzyme in wheat. Plant Physiol. 2000;124:253–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bhardwaj K, Raju A, Rajasekharan R Identification, purification, and characterization of a thermally stable lipase from rice bran. A new member of the (phospho) lipase family. Plant Physiol. 2001;127:1728–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Brenchley R, Spannagl M, Pfeiffer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerohrnu A, Bolser D, Kay S, et al. Analysis of the bread wheat genome using shotgun sequencing. Nature. 2012;491:705–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Butardo VM, Fitzgerald MA, Bird AR, Gidley MJ, Flanagan BM, Larroque O, Resurreccion AP, Laidlaw HKC, Jobling SA, Morell M, Rahman S. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing). J Exp Bot. 2011;62:4927–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cheah TW, Ismail I, Sidek NM, Wagiran A, Abdullah R. Biosynthesis of very long polyunsaturated omega-3 and omega-6 fatty acids in transgenic japonica rice (Oryza sativa L). Aust J Crop Sci. 2013;7:1227.

    Google Scholar 

  9. Da Silva MA, Sanches C. Amante, ER prevention of hydrolytic rancidity in rice bran. J Food Eng. 2006;75:487–91.

    Article  Google Scholar 

  10. Dupont F Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC Plant Biol. 2008;8:1–18.

    Article  Google Scholar 

  11. Fitzgerald MA, Rahman S, Resurreccion AP, Concepcion J, Daygon VD, Dipti SS, Kabir KA, Klingner B, Morell MK. Bird, AR identification of a major genetic determinant of glycaemic index in rice. Rice. 2011;4:66–74.

    Article  Google Scholar 

  12. Fujiki Y, Aizono Y, Funatsu M. Characterization of minor subunit of rice bran lipase. Agric Biol Chem. 1978;42:2401–2.

    Article  CAS  Google Scholar 

  13. Funatsu M, Aizono Y, Hayashi K, Watanabe M, Eto M. Biochemical studies on rice bran lipase. I. Purification and physical properties. Agric Biol Chem. 1971;35:734–42.

    Article  CAS  Google Scholar 

  14. Jenkins DJA, Wolever TMS, Taylor RH, Barker H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Amer J Clin Nutr. 1981;34:362–6.

    CAS  PubMed  Google Scholar 

  15. Kang GZ, Liu GQ, Xu W, Zhu YJ, Wang CY, Ling HQ, Guo TC. Identificaiton of the isoamylase 3 gene in common wheat and its expression profile during the grain-filling period. Genet Mol Res. 2013;12:4264–75.

    Article  CAS  PubMed  Google Scholar 

  16. Konik-Rose CM, Thistleton J, Chanvier H, Tan I, Halley P, Gidley M, Kosar-Hashemi B, Wang H, Larroque O, Ikea J, McMaugh S, Regina A, Rahman S, Morell M, Li Z. Dosage effect of SGP-1 mutant. Theor Appl Genet. 2007;115:1053–65.

    Article  CAS  PubMed  Google Scholar 

  17. Kosar-Hashemi B, Ikea J, Yamamori M, Li Z, Morell M, Rahman S. Multiple effects of the SGP-1 mutation in developing wheat endosperm. Funct Plant Biol. 2007;34:431–8.

    Article  CAS  Google Scholar 

  18. Kubo A, Rahman S, Li Z, Mukai Y, Yamamoto M, Utsumi Y, Ugaki M, Harada K, Satoh H, Morell M, Nakamura Y Isoamylase is essential for amylopectin biosynthesis in plants: complementation of sugary-1 phenotype in rice endosperm with the wheat Isoamylase1 gene. Plant Physiol. 2005;137:43–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li Z, Chu X, Mouille G, Yan L, Kosar-Hashemi B, Hey S, Napier J, Shewry P, Clarke B, Appels R, Morell M, Rahman S The localization, expression and role of the class ii starch synthases of wheat. Plant Physiol. 1999a;120:1147–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Li Z, Rahman S, Appels R, Morell M. Cloning and characterization of a gene encoding wheat soluble starch synthase I. Theor Appl Genet. 1999b;98:1208–16.

    Article  CAS  Google Scholar 

  21. Li Z, Mouille G, Kosar-Hashemi B, Rahman S, Clarke B, Appels R, Morell M. The structure and expression of the wheat starch synthase III gene: motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiol. 2000;123:613–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Li Z, Sun F, Xu S, Chu X, Mukai Y, Yamamoto M, Ali S, Rampling L, Kosar-Hashemi B, Rahman S, Morell MK. The structural organisation of the genes encoding class II starch synthase of wheat and barley and the evolution of the genes encoding starch synthases in plants. Funct Integr Genomics. 2003;3:76–85.

    CAS  PubMed  Google Scholar 

  23. Liu HL, Yin ZJ, Xiao L, Xu YN, Qu LQ. Identification and evaluation of omega-3 fatty acid desaturase genes for hyperfortifying alpha-linolenic acid in transgenic rice seed. J Exp Bot. 2012;63:3279–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. McMaugh SJ, Thistleton J, Anschaw E, Luo JX, Konik-Rose C, Wang H, Huang M, Larroque O, Regina A, Jobling SA, Morell MK, Li Z. J Exp Bot. 2014;65:2189–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T. Production of waxy(amylose-free) wheats. Mol Gen Genet. 1995;248:253–9.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura Y, Umemoto T, Takahata Y, Komae K, Amano E, Satoh H. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm. Possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physiol Plant. 1996;97:491–8.

    Article  CAS  Google Scholar 

  27. Peng MS, Gao M, Baga M, Hucl P, Chibbar RN. Starch branching enzymes preferentially associated with a–type starch granules in wheat endosperm. Plant Physiol. 2000;124:265–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rahman S, Kosar-Hashemi B, Samuel MS, Hill A, Abbott DC, Skerritt JH, Preiss J, Appels R, Morrell MK. The major proteins of wheat endosperm starch granules. Aust J Plant Physiol. 1995;22:793–803.

    Article  CAS  Google Scholar 

  29. Rahman S, Abrahams S, Abbott D, Mukai Y, Samuel M, Morell M, Appels R. A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome. 1997;40:465–74.

    Article  CAS  PubMed  Google Scholar 

  30. Rahman S, Li Z, Abrahams S, Abbott D, Appels R, Morell MK. Characterisation of a gene encoding wheat endosperm starch branching enzyme-I. Theor Appl Genet. 1999;98:156–63.

    Article  CAS  Google Scholar 

  31. Rahman S, Regina A, Li Z, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, Morell M. Comparison of starch branching enzymes genes reveals evolutionary relationships among isoforms: characterisation of a gene for starch branching enzymes IIa from the wheat D genome donor aegilops tauschii. Plant Physiol. 2001;125:1314–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rahman S, Bird A, Regina A, Li Z, Ral JP, McMaugh S, Topping D, Morell M. Resistant starch in cereals: exploiting genetic engineering and genetic variation. J Cereal Sci. 2007;46:251–60.

    Article  CAS  Google Scholar 

  33. Regina A, Kosar-Hashemi B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp P, Morell M, Rahman S. Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta. 2005;222:899–909.

    Article  CAS  PubMed  Google Scholar 

  34. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li ZY, Rahman S, Morell M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci U S A. 2006;103:3546–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Regina A, Berbezy P, Kosar-Hashemi B, Li S, Cmiel M, Larroque O, Bird AR, Swain SM, Cavanagh C, Jobling SA, Li Z, Morell M. A genetic strategy generating wheat with very high amylose content. Plant Biotechnol J. 2015;13:1276–86. doi:10.1111/pbi.12345.

  36. Simopoulos AP. n − 3 fatty acids and human health: defining strategies for public policy. Lipids. 2001;36:S83–9.

    Article  CAS  PubMed  Google Scholar 

  37. Sullivan TD, Strelow LI, Illingworth CA, Phillips RL, Nelson OE. Plant Cell. 1991;3:1337–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Suzuki G, Moriyama M, Fujioka K, Yamamoto M, Subramanyam NC, Li Z, Appels R, Morell M, Mukai Y, Rahman S. The starch branching enzyme I locus from aegilops tauschii, the donor of the D genome to wheat. Funct Integr Genomics. 2003;3:69–75.

    CAS  PubMed  Google Scholar 

  39. Tetlow IJ, Blisset KJ, Emes MJ. A rapid method for the isolation of purified amyloplasts from wheat endosperm. Planta. 1993;189:597–600.

    Article  CAS  Google Scholar 

  40. Tetlow IJ, Wait R, Lu ZX, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ. Protein phosphorylation in amyloplasts regulates branching enzyme activity and protein-protein interactions. Plant Cell. 2004;16:694–708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Thorbjornsen T, Villand P, Denyer K, Olsen OA. Smith AM distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J. 1996;10:243–50.

    Article  Google Scholar 

  42. Ting JT, Lee K, Ratnayake C, Platt KA, Balsamo RA, Huang AH. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Planta. 1996;199:158–65.

    Article  CAS  PubMed  Google Scholar 

  43. Tiwari G, Aumeeruddy A, Rahman S. Improving the economic value of rice bran oil. Malaysian J Appl Biol. 2014;43:1–8.

    Google Scholar 

  44. Vijayakumar K, Gowda LR. Rice (Oryza sativa) lipase: molecular cloning, functional expression and substrate specificity. Protein Expr Purif. 2013;88:67–79.

    Article  CAS  PubMed  Google Scholar 

  45. Wu YY, Chou YR, Wang CS, Tseng TH, Chen LJ, Tzen JT. Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiol Biochem. 2010;48:81–9.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamori M, Endo TR. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet. 1996;93:275–81.

    Article  CAS  PubMed  Google Scholar 

  47. Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T. Genetic elimination of a starch granule protein generates an altered starch with apparent high amylose. Theor Appl Genet. 2000;101:21–9.

    Article  CAS  Google Scholar 

  48. Yan L, Bhave M, Fairclough R, Konik C, Rahman S, Appels R. The genes encoding granule-bound starch synthase (GBSS) from the a, B and D progenitors of common wheat. Genome. 2000;43:264–72.

    Article  CAS  PubMed  Google Scholar 

  49. Yun MS, Kawagoe Y. Amyloplast division progresses simultaneously at multiple sites in the endosperm of rice. Plant Cell Physiol. 2009;50:1617–26.

    Article  CAS  PubMed  Google Scholar 

  50. Zaplin E, Liu Q, Li Z, Blanchard C, Rahman S. Alteration of rice oil composition through targeting FAD2 gene. Funct Plant Biol. 2013;40:996–1005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadequr Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniandy, K., Al-Ajli, F.O.M., Ng, X.Y. et al. Genes involved in the accumulation of starch and lipids in wheat and rice: characterization using molecular and cytogenetic techniques. Nucleus 58, 185–190 (2015). https://doi.org/10.1007/s13237-015-0149-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-015-0149-9

Keywords

Navigation