Skip to main content
Log in

Preparation of hollowTiO2 nanospheres with highly porous surface for effective nucleating agents in supercritical carbon dioxide foaming of thermoplastic polyurethanes

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, hollow nanospheres of titanium dioxide (TiO2) are prepared and utilized as potential nucleating agents in supercritical carbon dioxide (scCO2) foaming process of thermoplastic polyurethanes (TPUs) at different foaming temperatures and saturation pressures. To produce the hollow nanospheres of titanium dioxide (TiO2), well-defined spheres of polystyrene (PS) with a diameter of about 300 nm are first synthesized as templates using surfactant-free emulsion polymerization. A layer of titanium tetraisopropoxide (TTIP) is then uniformly coated on the PS spheres followed by calcination in a furnace to convert the titania layer to the titanium oxide layer. Hollow nanospheres of titanium dioxide with a well-defined morphology are prepared by calcination at high temperatures, as the PS spheres completely decompose. Interestingly, highly porous structures, which give rise to high surface area for trapping scCO2, are generated on the surface of the TiO2 nanoparticles during the thermal treatment. The dispersion of TiO2 nanospheres in the TPU matrix is successful, serving as heterogeneous nucleating agents that influence the cell density and morphology of the extended TPU in the foaming process.

Graphical abstract

In this study, hollow nanospheres of titanium dioxide (TiO2) with unique porous surface are prepared and utilized as potential nucleating agents in supercritical carbon dioxide (scCO2) foaming process of thermoplastic polyurethanes (TPUs) to control various foaming parameters including foaming ratio, cell size, cell density etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Lee, C. Zeng, X. Cao, X. Han, J. Shen, G. Xu, Compos. Sci. Technol. 65(15–16), 2344–2363 (2005). https://doi.org/10.1016/j.compscitech.2005.06.016

    Article  CAS  Google Scholar 

  2. M. Sauceau, J. Fages, A. Common, C. Nikitine, E. Rodier, Prog. Polym. Sci. 36(6), 749–766 (2011). https://doi.org/10.1016/j.progpolymsci.2010.12.004

    Article  CAS  Google Scholar 

  3. S.K. Goel, E.J. Beckman, Polym. Eng. Sci. 34(14), 1137–1147 (1994). https://doi.org/10.1002/pen.760341407

    Article  CAS  Google Scholar 

  4. S.K. Goel, E.J. Beckman, Polym. Eng. Sci. 34(14), 1148–1156 (1994). https://doi.org/10.1002/pen.760341408

    Article  CAS  Google Scholar 

  5. S.-K. Yeh, Y.-C. Liu, C.-C. Chu, K.-C. Chang, S.-F. Wang, Ind. Eng. Chem. Res. 56(30), 8499–8507 (2017). https://doi.org/10.1021/acs.iecr.7b00942

    Article  CAS  Google Scholar 

  6. K.A. Arora, A.J. Lesser, T.J. McCarthy, Macromolecules 31(14), 4614–4620 (1998). https://doi.org/10.1021/ma971811z

    Article  CAS  Google Scholar 

  7. D.D. Luong, D. Pinisetty, N. Gupta, Compos. B Eng. 44(1), 403–416 (2013). https://doi.org/10.1016/j.compositesb.2012.04.060

    Article  CAS  Google Scholar 

  8. Z. Xing, G. Wu, S. Huang, S. Chen, H. Zeng, J. Supercrit. Fluids 47(2), 281–289 (2008). https://doi.org/10.1016/j.supflu.2008.08.009

    Article  CAS  Google Scholar 

  9. R.W. Seymour, S.L. Cooper, Macromolecules 6(1), 48–53 (1973). https://doi.org/10.1021/ma60031a008

    Article  CAS  Google Scholar 

  10. R.W. Seymour, G.M. Estes, S.L. Cooper, Macromolecules 3(5), 579–583 (1970). https://doi.org/10.1021/ma60017a021

    Article  Google Scholar 

  11. S.L. Cooper, A.V. Tobolsky, J. Appl. Polym. Sci. 10(12), 1837–1844 (1966). https://doi.org/10.1002/app.1966.070101204

    Article  CAS  Google Scholar 

  12. V. Kumar, J. Weller, J. Eng. Ind. 116(4), 413–420 (1994). https://doi.org/10.1115/1.2902122

    Article  Google Scholar 

  13. S. Doroudiani, C.B. Park, M.T. Kortschot, Polym. Eng. Sci. 38(7), 1205–1215 (1998). https://doi.org/10.1002/pen.10289

    Article  Google Scholar 

  14. W. Zhai, J. Yu, L. Wu, W. Ma, J. He, Polymer 47(21), 7580–7589 (2006). https://doi.org/10.1016/j.polymer.2006.08.034

    Article  CAS  Google Scholar 

  15. R. Pop-Iliev, G.M. Rizvi, C.B. Park, Polym. Eng. Sci. 43(1), 40–54 (2003). https://doi.org/10.1002/pen.10003

    Article  CAS  Google Scholar 

  16. A.I. Cooper, J. Mater. Chem. 10(2), 207–234 (2000). https://doi.org/10.1039/a906486i

    Article  CAS  Google Scholar 

  17. J.S. Colton, N.P. Suh, Polym. Eng. Sci. 27(7), 485–492 (1987). https://doi.org/10.1002/pen.760270702

    Article  CAS  Google Scholar 

  18. J.S. Colton, N.P. Suh, Polym. Eng. Sci. 27(7), 493–499 (1987). https://doi.org/10.1002/pen.760270703

    Article  CAS  Google Scholar 

  19. P. Spitael, C.W. Macosko, R.B. McClurg, Macromolecules 37(18), 6874–6882 (2004). https://doi.org/10.1021/ma049712q

    Article  CAS  Google Scholar 

  20. M. Okamoto, P.H. Nam, H. Okamoto, Nano Lett. 9(1), 503–505 (2001). https://doi.org/10.1021/nl010051+

    Article  CAS  Google Scholar 

  21. W. Wang, S. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, C.S. Ozkan, Nano Energy 2(2), 294–303 (2013). https://doi.org/10.1016/j.nanoen.2012.10.001

    Article  CAS  Google Scholar 

  22. Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196

    Article  CAS  PubMed  Google Scholar 

  23. S. Siripurapu, J.M. DeSimone, S.A. Khan, R.J. Spontak, Macromolecules 38(6), 2271–2280 (2005). https://doi.org/10.1021/ma047991b

    Article  CAS  Google Scholar 

  24. Z. He, L. Zhou, G. Li, X. Zeng, T. An, G. Sheng, J. Fu, Z. Bai, J. Hazard. Mater. 167(1–3), 275–281 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.116

    Article  CAS  PubMed  Google Scholar 

  25. A. Imhof, Langmuir 17(12), 3579–3585 (2001). https://doi.org/10.1021/la001604j

    Article  CAS  Google Scholar 

  26. Z.-M. Xu, X.-L. Jiang, T. Liu, G.-H. Hu, L. Zhao, Z.-N. Zhu, W.-K. Yuan, J. Supercrit. Fluids 41(2), 299–310 (2007). https://doi.org/10.1016/j.supflu.2006.09.007

    Article  CAS  Google Scholar 

  27. Y. Guo, N. Hossieny, R.K.M. Chu, C.B. Park, N. Zhou, Chem. Eng. J. 214, 180–188 (2013). https://doi.org/10.1016/j.cej.2012.10.043

    Article  CAS  Google Scholar 

  28. S. Liu, R. Eijkelenkamp, J. Duvigneau, G.J. Vancso, ACS Appl. Mater. Interfaces 9(43), 37929–37940 (2017). https://doi.org/10.1021/acsami.7b11248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was partly supported by Gyeonggi Regional Research Center (GRRC) Program (GRRC DANKOOK 2016-B02), the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2021R1F1A1064058) and Research-Focused Department Promotion & Interdisciplinary Convergence Research Project as a part of the University Innovation Support Program for Dankook University in 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyun Lee.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 582 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, J.S., Kim, H., Chang, T. et al. Preparation of hollowTiO2 nanospheres with highly porous surface for effective nucleating agents in supercritical carbon dioxide foaming of thermoplastic polyurethanes. Macromol. Res. (2024). https://doi.org/10.1007/s13233-024-00269-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13233-024-00269-3

Keywords

Navigation