Skip to main content
Log in

Based on Eudragit® encapsulated ionic polymer IR775@nido-carborane strategy: release, bioactivity and tumor cell imaging studies in simulated gastrointestinal environment

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To enhance the bioavailability of carborane as a potential pharmacophore for BNCT, we labeled the modified o-carborane with the near-infrared dye IR775 and encapsulated it using two types of Eudragit® (pH-sensitive and osmotic). Consequently, four separate fluorescent complexes containing carborane were acquired. To confirm the nido-carborane presence within these complexes, the distinct peak at 2510 cm−1 was detected using infrared spectroscopy as a first step. The photophysical properties were observed in phosphate buffer with different pH. The UV and fluorescence spectra of the four fluorescent complexes were very similar, with the maximum absorption wavelengths centered in the range of 773–789 nm and the emission wavelengths centered in the range of 796–811 nm. Subsequently, a stable and releasing complex L100-C-IR775 was screened through zeta potential testing and simulated release experiments in the gastrointestinal environment, and spherical shape was observed by transmission electron microscopy. AFM imaging showed a relatively smooth surface with a uniform distribution of protrusions. The L100-C-IR775 was then applied to tumor cell imaging, and it was observed that it could enter into three kinds of tumor cells, A549, HCT116 and HeLa, and distribute around the nucleus. Finally, it was shown by a cell proliferation toxicity assay (CCK8) that the compound inhibited HeLa and PC-3 cells by 50 and 51% at concentrations up to 10 µg/mL. In conclusion, the carborane fluorescent complexes prepared in this paper have good biocompatibility and demonstrate toxicity toward tumor cell proliferation. Furthermore, they have the potential to serve as a carbon borane anti-tumor prodrug.

Graphical abstract

An acrylic encapsulated ionic polymer IR775@nido-carborane simulates release in the gastrointestinal environment, tumor cells imaging, and schematics of therapeutic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Dai, Q. Yang, X. Bao, J. Chen, M. Han, Q. Wei, The development of boron analysis and imaging in boron neutron capture therapy (BNCT). Mol. Pharm. 19(2), 363–377 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. M. Suzuki, Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int. J. Clin. Oncol. 25(1), 43–50 (2020)

    Article  MathSciNet  PubMed  Google Scholar 

  3. P. Coghi, J. Li, N.S. Hosmane, Y. Zhu, Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med. Res. Rev. 43(5), 1809–1830 (2023)

    Article  CAS  PubMed  Google Scholar 

  4. T. D. Malouff, D.S. Seneviratne, D.K. Ebner, W.C. Stross, M.R. Waddle, D.M. Trifiletti, S. Krishnan, Boron neutron capture therapy: a review of clinical applications. Front. Oncol. 11 (2021)

  5. J. Chen, Q. Dai, Q. Yang, X. Bao, Y. Zhou, H. Zhong, L. Wu, T. Wang, Z. Zhang, Y. Lu et al., Therapeutic nucleus-access BNCT drug combined CD47-targeting gene editing in glioblastoma. J. Nanobiotechnol. 20(1), 102 (2022)

    Article  Google Scholar 

  6. I. Kato, K. Ono, Y. Sakurai, M. Ohmae, A. Maruhashi, Y. Imahori, M. Kirihata, M. Nakazawa, Y. Yura, Effectiveness of BNCT for recurrent head and neck malignancies. Appl. Radiat. Isot. 61(5), 1069–1073 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. H. Fukuda, Boron neutron capture therapy (BNCT) for cutaneous malignant melanoma using B-10-p-boronophenylalanine (BPA) with special reference to the radiobiological basis and clinical results. Cells 10(11), 2881 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Nunez, M. Tarres, A. Ferrer-Ugalde, F.F. de Biani, F. Teixidor, Electrochemistry and photoluminescence of icosahedral carboranes, boranes, metallacarboranes, and their derivatives. Chem. Rev. 116(23), 14307–14378 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. X. Wu, J. Guo, J. Zhao, Y. Che, D. Jia, Y. Chen, Multifunctional luminescent molecules of o-carborane–pyrene dyad/triad: flexible synthesis and study of the photophysical properties. Dyes Pigments 154, 44–51 (2018)

    Article  CAS  Google Scholar 

  10. F. Ali, N.S. Hosmane, Y. Zhu, Boron chemistry for medical applications. Molecules 25(4), 828 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Gozzi, B. Schwarze, E. Hey-Hawkins, Preparing (metalla)carboranes for nanomedicine. ChemMedChem 16(10), 1533–1565 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Duo, Z. Xie, L. Wang, N.M. Abbasi, T. Yang, Z. Li, G. Hu, H. Zhang, Borophene-based biomedical applications: status and future challenges. Coord. Chem. Rev. 427, 213549 (2021)

    Article  CAS  Google Scholar 

  13. Y. Sha, Z. Zhou, M. Zhu, Z. Luo, E. Xu, X. Li, H. Yan, The mechanochemistry of carboranes. Angew. Chem. Int. Ed. 61(25), e202203169 (2022)

    Article  ADS  CAS  Google Scholar 

  14. J. Wang, L. Chen, J. Ye, Z. Li, H. Jiang, H. Yan, M.Y. Stogniy, I.B. Sivaev, V.I. Bregadze, X. Wang, Carborane derivative conjugated with gold nanoclusters for targeted cancer cell imaging. Biomacromol 18(5), 1466–1472 (2017)

    Article  CAS  Google Scholar 

  15. Y. Chen, F. Du, L. Tang, J. Xu, Y. Zhao, X. Wu, M. Li, J. Shen, Q. Wen, C.H. Cho et al., Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol. Ther.-Oncol. 24, 400–416 (2022)

    Article  CAS  Google Scholar 

  16. A. Marfavi, P. Kavianpour, L.M. Rendina, Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 6(7), 486–504 (2022)

    Article  PubMed  Google Scholar 

  17. R. Conway-Kenny, A. Ferrer-Ugalde, O. Careta, X. Cui, J. Zhao, C. Nogues, R. Nunez, J. Cabrera-Gonzalez, S.M. Draper, Ru(II) and Ir(III) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT. Biomater. Sci. 9(16), 5691–5702 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Wang, Y. Xu, J. Yang, X. Qiu, N. Li, Y. Zhu, L. Yan, W. Li, X. Huang, K. Liang et al., Carborane based mesoporous nanoparticles as a potential agent for BNCT. Mater. Chem. Front. 5(6), 2771–2776 (2021)

    Article  CAS  Google Scholar 

  19. Y. Chen, L. Li, W. Chen, H. Chen, J. Yin, Near-infrared small molecular fluorescent dyes for photothermal therapy. Chin. Chem. Lett. 30(7), 1353–1360 (2019)

    Article  CAS  Google Scholar 

  20. J. Jiao, J. Zhang, F. Yang, W. Song, D. Han, W. Wen, W. Qin, Quicker, deeper and stronger imaging: a review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. Eur. J. Pharm. Biopharm. 152, 123–143 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. D.-H. Li, C.L. Schreiber, B.D. Smith, Sterically shielded heptamethine cyanine dyes for bioconjugation and high performance near-infrared fluorescence imaging. Angew. Chem. Int. Ed. 59(29), 12154–12161 (2020)

    Article  CAS  Google Scholar 

  22. M. Strobl, A. Walcher, T. Mayr, I. Klimant, S.M. Borisov, Trace ammonia sensors based on fluorescent near-infrared emitting aza-BODIPY dyes. Anal. Chem. 89(5), 2859–2865 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. Y.Q. Sun, J. Liu, X. Lv, Y. Liu, Y. Zhao, P.D.W. Guo, Rhodaminderivate als Nahinfrarotfarbstoffe und ihre Anwendung in Fluoreszenzsonden. Angew. Chem. 124(31), 7752–7754 (2012)

    Article  ADS  Google Scholar 

  24. G. Renno, F. Cardano, V. Ilieva, G. Viscardi, A. Fin, Near-infrared squaraine dyes as bright fluorescent probes: a structure-activity photophysical investigation in liposomes. Eur. J. Org. Chem. 2022(37), e202200833 (2022)

    Article  CAS  Google Scholar 

  25. A. Barbieri, E. Bandini, F. Monti, V.K. Praveen, N. Armaroli, The rise of near-infrared emitters: organic dyes, porphyrinoids, and transition metal complexes. Top. Curr. Chem. 374(4), 47 (2016)

    Article  Google Scholar 

  26. C. Sun, W. Du, B. Wang, B. Dong, B. Wang, Research progress of near-infrared fluorescence probes based on indole heptamethine cyanine dyes in vivo and in vitro. BMC Chem. 14(1), 21 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Huebner, V. Benkert, X. Cheng, B. Waengler, R. Kraemer, C. Waengler, Probing two PESIN-indocyanine-dye-conjugates: significance of the used fluorophore. J. Mater. Chem. B 8(6), 1302–1309 (2020)

    Article  CAS  Google Scholar 

  28. G. Yeroslavsky, M. Umezawa, K. Okubo, K. Nigoghossian, D. Thi Kim Dung, K. Miyata, M. Kamimura, K. Soga, Stabilization of indocyanine green dye in polymeric micelles for NIR-II fluorescence imaging and cancer treatment. Biomater. Sci. 8(8), 2245–2254 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. S. Thakral, N.K. Thakral, D.K. Majumdar, Eudragit (R): a technology evaluation. Expert Opin. Drug Deliv. 10(1), 131–149 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. P. Franco, I. De Marco, Eudragit: a novel carrier for controlled drug delivery in supercritical antisolvent coprecipitation. Polymers 12(1), 234 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Nikam, P.R. Sahoo, S. Musale, R.R. Pagar, A.C. Paiva-Santos, P.S. Giram, A systematic overview of Eudragit((R)) based copolymer for Smart Healthcare. Pharmaceutics 15(2), 587 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P.-C. Wu, Y.-B. Huang, C.-H. Sung, R.-J. Wang, Y.-H. Tsai, The effect of Eudragit and enteric polymer composite on the release of Nicardipine. J. Food Drug Anal. 14(4), 334–339 (2006)

    CAS  Google Scholar 

  33. S.K. Jain, A.K. Jain, K. Rajpoot, Expedition of Eudragit(R) polymers in the development of novel drug delivery systems. Curr. Drug Deliv. 17(6), 448–469 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. D.A. Real, A. Gagliano, N. Sonsini, G. Wicky, L. Orzan, D. Leonardi, C. Salomon, Design and optimization of pH-sensitive Eudragit nanoparticles for improved oral delivery of triclabendazole. Int. J. Pharm. 617, 121594 (2022)

    Article  Google Scholar 

  35. A. Martin-Illana, R. Cazorla-Luna, F. Notario-Perez, J. Rubio, R. Ruiz-Caro, A. Tamayo, M.D. Veiga, Eudragit(R) L100/chitosan composite thin bilayer films for intravaginal pH-responsive release of Tenofovir. Int. J. Pharm. 616, 121554 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. Y.B.G. Patriota, I.E.S. Arruda, A.C.D.J. Oliveira, T.C. de Oliveira, E.D.L.V. Silva, L.L. Chaves, F.D.O.S. Ribeiro, D.A. da Silva, M.F.D.L.R. Soares, J.L. Soares-Sobrinho, Synthesis of Eudragit(R) L100-coated chitosan-based nanoparticles for oral enoxaparin delivery. Int. J. Biol. Macromol. 193, 450–456 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. J. Yin, C. Xiang, X. Song, Nanoencapsulation of psoralidin via chitosan and Eudragit S100 for enhancement of oral bioavailability. Int. J. Pharm. 510(1), 203–209 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. E. Marti Coma-Cros, A. Biosca, E. Lantero, M.L. Manca, C. Caddeo, L. Gutierrez, M. Ramirez, L. Neves Borgheti-Cardoso, M. Manconi, X. Fernandez-Busquets, Antimalarial activity of orally administered curcumin incorporated in Eudragit((R))-containing liposomes. Int. J. Mol. Sci. 19(5), 1361 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Zhu, J. Yu, G. Zhou, Z. Gu, M. Adu-Frimpong, W. Deng, J. Yu, X. Xu, Piperine fast disintegrating tablets comprising sustained-release matrix pellets with enhanced bioavailability: formulation, in vitro and in vivo evaluation. Pharm. Dev. Technol. 25(5), 617–624 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. C. Sun, W. Li, P. Ma, Y. Li, Y. Zhu, H. Zhang, M. Adu-Frimpong, W. Deng, J. Yu, X. Xu, Development of TPGS/F127/F68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem. Toxicol. 137, 111126 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. A. Pitto-Barry, Polymers and boron neutron capture therapy (BNCT): a potent combination. Polym. Chem. 12(14), 2035–2044 (2021)

    Article  CAS  Google Scholar 

  42. Z. Ruan, L. Liu, L. Fu, T. Xing, L. Yan, NIR bioimaging-guided carborane containing macromolecular agent for BNCT. J. Controll. Release 259, E190–E190 (2017)

    Article  Google Scholar 

  43. H. Ouyang, Z. Wang, L. Huang, J. Hu, X. Ma, X. Feng, G. Jin, A simple and efficient visualization of Rhodamine B-nido-carborane fluorescent labeling for tumor cell imaging. J. Iran. Chem. Soc. 20, 2507–2516 (2023)

    Article  CAS  Google Scholar 

  44. C. Wuerth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 8(8), 1535–1550 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the scientific research foundation of Jiangsu University (Grant no. 5501290005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingxia Chu, Shihe Shao, Chichong Lu or Guofan Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 987 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, Y., Zhou, M. et al. Based on Eudragit® encapsulated ionic polymer IR775@nido-carborane strategy: release, bioactivity and tumor cell imaging studies in simulated gastrointestinal environment. Macromol. Res. (2024). https://doi.org/10.1007/s13233-024-00250-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13233-024-00250-0

Keywords

Navigation