Skip to main content
Log in

Preparation, sustained release and cell imaging studies of rhodamine 6G@-nido-carborane fluorescent polymer

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this paper, rhodamine 6G and carborane were used as raw materials, and four fluorescent polymers were prepared by one-pot method, namely L100-55 fluorescent polymer (L100-55-B), EPO polymer (EPO-B), RS polymer (RS) and RL polymer (RL). The problem of poor water solubility of carborane was solved and the biocompatibility of rhodamine 6G-nido-carborane was improved. By simulating the release of polymers in different gastrointestinal environments, it was found that the release rate of drugs in the four coating materials was slow and controllable, with good bioavailability. Affected by the properties of the resin, L100-55 and EPO coating had the best release effect in the gastrointestinal tract. In the zeta potential test, the absolute potential values of L100-55-B and EPO-B are stable, both up to 30 mV. Transmission electron microscopy revealed that the drug was uniformly dispersed in the drug carrier material and wrapped into nanospheres with particle sizes below 500 nm. Hela cells were imaged in different acidic environments, and the results showed that the polymer had good affinity with target cells and was closely connected to target cells, indicating good biocompatibility and targeting of the polymer. This design not only solves the bioavailability problem of rhodamine 6G-nido-carborane, but also has a good fluorescence targeting effect.

Graphical abstract

Rhodamine 6G-nido-carborane coated by four eudragits, L100-55, EPO, RS, and RL, are released in the gastrointestinal environment. Cell imaging under a microscope shows that L100-55-B and EPO-B have a strong affinity for Hela cells. Four coating pathways, the released rhodamine 6G-nido-carborane targets tumor cells and exerts inhibitory effects.

1. The bioavailability and water solubility of carborane derivatives have been improved.

2. Rhodamine 6G is used to make the complex visible in vivo, which is convenient for monitoring the drug distribution.

3. Acrylic resin coating can change drug release performance.

4. Hela cell imaging experiments display excellent cellular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lu, W.; Wu, Y.; Ma, Y.-N.; Chen, F.; Chen, X., A Method for Highly Selective Halogenation of o-Carboranes and m-Carboranes. Inorganic Chemistry 2023, 62 (2), 885–892.https://doi.org/10.1021/acs.inorgchem.2c03694

  2. Calabrese, G.; Daou, A.; Barbu, E.; Tsibouklis, J., Towards carborane-functionalised structures for the treatment of brain cancer. Drug discovery today 2018, 23 (1), 63–75.https://doi.org/10.1016/j.drudis.2017.08.009

  3. Barth, R. F.; Mi, P.; Yang, W., Boron delivery agents for neutron capture therapy of cancer. (2523–3548 (Electronic)).

  4. Yang, L.; Zhang, Z.-J.; Bongsuiru Jei, B.; Ackermann, L., Electrochemical Cage Activation of Carboranes. 2022, 61 (20), e202200323.https://doi.org/10.1002/anie.202200323

  5. Tang, W.; He, Y.; Li, H., Migration Mechanism of the B−H Activation of Carboranes. 2022, 2022 (23), e202200254.https://doi.org/10.1002/ejic.202200254

  6. Sivaev, I. B.; Stogniy, M. Y., Mercury derivatives of polyhedral boranes, carboranes, and metallacarboranes. Russian Chemical Bulletin 2019, 68 (2), 217–253.https://doi.org/10.1007/s11172-019-2379-5

  7. Chen, Y.; Du, F.; Tang, L.; Xu, J.; Zhao, Y.; Wu, X.; Li, M.; Shen, J.; Wen, Q.; Cho, C. H.; Xiao, Z., Carboranes as unique pharmacophores in antitumor medicinal chemistry. Molecular Therapy - Oncolytics 2022, 24, 400–416.https://doi.org/10.1016/j.omto.2022.01.005

  8. Rys, E. G.; Alpatova, V. M.; Kononova, E. G.; Smol’yakov, A. F.; Moiseev, S. K.; Ol'shevskaya, V. A., Employment of Michael addition reactions for the functionalization of carboranes. New Journal of Chemistry 2022, 46 (37), 18025–18032.https://doi.org/10.1039/D2NJ03509J

  9. Marfavi, A.; Kavianpour, P.; Rendina, L. M., Carboranes in drug discovery, chemical biology and molecular imaging. Nature Reviews Chemistry 2022, 6 (7), 486–504.https://doi.org/10.1038/s41570-022-00400-x

  10. Wang, Q.; Liu, B.; Feng, K.; Hashmi, A. S. K., Recent Advance in Transition Metal-Catalyzed Carboxylic Acid Guided B−H Functionalization of Carboranes. 2022, 364 (24), 4174–4188.https://doi.org/10.1002/adsc.202201183

  11. Khalil, A.; Shaker S. Adam, M., Nucleoside Scaffolds and Carborane Clusters for Boron Neutron Capture Therapy: Developments and Future Perspective. Current Medicinal Chemistry 2024, 31, 1–16.https://doi.org/10.2174/0109298673245020230929152030

  12. Bhusan Jena, B.; Satapathy, R., Physico-chemical Properties and Anticancer Activity of Carborane-BODIPY Conjugates: A Review. ChemistrySelect 2023, 8 (34), e202302310.https://doi.org/10.1002/slct.202302310

  13. Liu, J.; Chen, D.; Pan, F.; Wu, J., Neighborhood Path Complex for the Quantitative Analysis of the Structure and Stability of Carboranes. 2023, 22 (04), 503–511.https://doi.org/10.1142/s2737416523500229

  14. Lanfranco, A.; Renzi, P.; Rusconi, M.; Deagostino, A., Carboranes meet photochemistry: Recent progresses in light-mediated cage functionalisation. Tetrahedron Letters 2023, 131, 154782.https://doi.org/10.1016/j.tetlet.2023.154782

  15. Swain, B. R.; Jena, S. R.; Beriha, S. K.; Mahanta, C. S.; Jena, B. B.; Prasanth, T.; Samanta, L.; Satapathy, R.; Dash, B. P., Synthesis and anticancer properties of dendritic glycoconjugates containing multiple o-carborane clusters. New Journal of Chemistry 2023, 47 (21), 10296–10308.https://doi.org/10.1039/D3NJ00182B

  16. Flieger, S.; Takagaki, M.; Kondo, N.; Lutz, M. R.; Gupta, Y.; Ueda, H.; Sakurai, Y.; Moran, G.; Kempaiah, P.; Hosmane, N.; Suzuki, M.; Becker, D. P., Carborane-Containing Hydroxamate MMP Ligands for the Treatment of Tumors Using Boron Neutron Capture Therapy (BNCT): Efficacy without Tumor Cell Entry. 2023, 24 (8), 6973.

  17. Majumder, S.; Chatterjee, S.; Basnet, P.; Mukherjee, J., Plasmonic photocatalysis of concentrated industrial LASER dye: Rhodamine 6G. Journal of Molecular Liquids 2022, 358, 119138.https://doi.org/10.1016/j.molliq.2022.119138

  18. Jiang, Y.; Wang, X.; Zhao, G.; Shi, Y.; Thuy, N. T. D.; Yang, H., SERS Determination of Trace Phosphate in Aquaculture Water Based on a Rhodamine 6G Molecular Probe Association Reaction. 2022, 12 (5), 319.

  19. C. Tian, C. Ma, X. Han, Z.F. Zhang, Doping of polymer optical fiber cladding by Rhodamine 6G in aqueous solution at elevated temperature. Polym. Bull. 80(3), 3395–3403 (2023). https://doi.org/10.1007/s00289-022-04224-z

    Article  CAS  Google Scholar 

  20. S.M. Iftiquar, H. Zilay, Investigation of variation in fluorescence intensity from rhodamine 6G dye in a trapped and levitated liquid micro-drop. Optik 291, 171351 (2023). https://doi.org/10.1016/j.ijleo.2023.171351

    Article  CAS  Google Scholar 

  21. A. Kamoshita, J.-Y. Kohno, Cavity-enhanced fluorescence in colliding droplets of rhodamine 6g aqueous solutions. J. Phys. Chem. A 127(36), 7605–7611 (2023). https://doi.org/10.1021/acs.jpca.3c03667

    Article  CAS  PubMed  Google Scholar 

  22. K. Wang, J. Wang, X. Xu, M. Rong, L. Lu, X. Zhao, Y. Wang, Y. Jiang, Fe3O4-rhodamine 6G nanoparticles: An iron enhanced pH sensitive multimodal probe for fluorescence and magnetic resonance imaging of tumor cell. J. Mater. Sci. Technol. 160, 128–138 (2023). https://doi.org/10.1016/j.jmst.2023.03.022

    Article  CAS  Google Scholar 

  23. K.P. Seremeta, D.A. Chiappetta, A. Sosnik, Poly(ɛ-caprolactone), Eudragit® RS 100 and poly(ɛ-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf. B Biointerfaces 102, 441–449 (2013). https://doi.org/10.1016/j.colsurfb.2012.06.038

    Article  CAS  PubMed  Google Scholar 

  24. Y. Liu, M. Zhou, S. Wang, J. Feng, C. Lu, G. Jin, Strategy of eudragit coated curcumin nanoparticles delivery system: release and cell imaging studies in simulated gastrointestinal microenvironments. Bioorg. Chem. 139, 106732 (2023). https://doi.org/10.1016/j.bioorg.2023.106732

    Article  CAS  PubMed  Google Scholar 

  25. H.S. Sardou, F. Sadeghi, H.A. Garekani, A. Akhgari, A. Hossein Jafarian, M. Abbaspour, A. Nokhodchi, Comparison of 5-ASA layered or matrix pellets coated with a combination of ethylcellulose and Eudragits L and s in the treatment of ulcerative colitis in rats. Int. J. Pharm. 640, 122981 (2023). https://doi.org/10.1016/j.ijpharm.2023.122981

    Article  CAS  PubMed  Google Scholar 

  26. M.K. Anwer, M.M. Ahmed, M.F. Aldawsari, M. Iqbal, G.A. Soliman, I.A. Aljuffali, Eluxadoline-loaded Eudragit nanoparticles for irritable bowel syndrome with diarrhea: formulation: optimization using Box-Behnken design, and anti-diarrheal activity. Pharmaceutics 15(5), 1460 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Peter, M.M. Mathews, F. Saju, S. Paul, Development, optimization and in vitro characterization of Eudragit-Ganciclovir nanosuspension or treating herpes simplex keratitis. J. Pharm. Innov. (2023). https://doi.org/10.1007/s12247-023-09723-8

    Article  Google Scholar 

  28. P. Kriplani, K. Guarve, Eudragit, a nifty polymer for anticancer preparations: a patent review. Recent Pat. Anti-cancer Drug Discov. 17(1), 92–101 (2022). https://doi.org/10.2174/1574892816666211013113841

    Article  CAS  Google Scholar 

  29. R. Patel, S. Wairkar, Co-precipitates of lumefantrine-Eudragit E PO for dissolution improvement. Ann. Pharm. Fr. 80(1), 59–66 (2022). https://doi.org/10.1016/j.pharma.2021.05.006

    Article  CAS  PubMed  Google Scholar 

  30. G. Wang, Y. Yang, D. Yi, L. Yuan, P.H. Yin, X. Ke, W. Jun-Jie, M.F. Tao, Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo. J. Liposome Res. 32(3), 250–264 (2022). https://doi.org/10.1080/08982104.2021.1999974

    Article  CAS  PubMed  Google Scholar 

  31. A. Martín-Illana, R. Cazorla-Luna, F. Notario-Pérez, J. Rubio, R. Ruiz-Caro, A. Tamayo, M.D. Veiga, Eudragit® L100/chitosan composite thin bilayer films for intravaginal pH-responsive release of Tenofovir. Int. J. Pharm. 616, 121554 (2022). https://doi.org/10.1016/j.ijpharm.2022.121554

    Article  CAS  PubMed  Google Scholar 

  32. A. Gupta, A. Sood, A. Dhiman, N. Shrimali, R. Singhmar, P. Guchhait, G. Agrawal, Redox responsive poly(allylamine)/eudragit S-100 nanoparticles for dual drug delivery in colorectal cancer. Biomater. Adv. 143, 213184 (2022). https://doi.org/10.1016/j.bioadv.2022.213184

    Article  CAS  PubMed  Google Scholar 

  33. D. Andrés Real, A. Gagliano, N. Sonsini, G. Wicky, L. Orzan, D. Leonardi, C. Salomon, Design and optimization of pH-sensitive Eudragit nanoparticles for improved oral delivery of triclabendazole. Int. J. Pharm. 617, 121594 (2022). https://doi.org/10.1016/j.ijpharm.2022.121594

    Article  CAS  PubMed  Google Scholar 

  34. S.M. Assaf, A.M. Ghanem, S.A. Alhaj, E.A. Khalil, A.A. Sallam, Formulation and evaluation of Eudragit® RL polymeric double layer films for prolonged-release transdermal delivery of tamsulosin hydrochloride. AAPS PharmSciTech 23(6), 210 (2022). https://doi.org/10.1208/s12249-022-02358-x

    Article  CAS  PubMed  Google Scholar 

  35. H. Maleki, M. Doostan, M.H. Farzaei, P. Seifi, S. Miraghaee, M. Doostan, Achillea Wilhelmsii-incorporated chitosan@Eudragit nanoparticles intended for enhanced ulcerative colitis treatment. AAPS PharmSciTech 24(5), 112 (2023). https://doi.org/10.1208/s12249-023-02568-x

    Article  CAS  PubMed  Google Scholar 

  36. G. Lian, Y. Liu, K. Hu, M. Zhou, J. Feng, S. Wang, C. Lu, G. Jin, Multi salt strategy based on curcumin pyrimidine derivatives prodrugs: Synthesis, biological activity, in vitro and in vivo imaging, and drug distribution research. Dyes Pigments 216, 111310 (2023). https://doi.org/10.1016/j.dyepig.2023.111310

    Article  CAS  Google Scholar 

  37. W. Chen, S. Yao, J. Wan, Y. Tian, L. Huang, S. Wang, F. Akter, Y. Wu, Y. Yao, X. Zhang, BBB-crossing adeno-associated virus vector: an excellent gene delivery tool for CNS disease treatment. J. Control. Release 333, 129–138 (2021). https://doi.org/10.1016/j.jconrel.2021.03.029

    Article  CAS  PubMed  Google Scholar 

  38. K. Yilmaz, I.H. Gubbuk, E.M. Cagil, Production and characterization of a new targeted pH-responsive sporopollenin system for controlled drug release. Macromol. Res. 32(1), 45–57 (2024). https://doi.org/10.1007/s13233-023-00202-0

    Article  CAS  Google Scholar 

  39. B. Joseph, S. Gomosta, S.K. Barik, S.K. Sinha, T. Roisnel, V. Dorcet, J.-F. Halet, S. Ghosh, Synthesis and characterization of diruthenaborane analogues of pentaborane(11) and hexaborane(10). J. Organomet. Chem. 865, 29–36 (2018). https://doi.org/10.1016/j.jorganchem.2017.12.011

    Article  CAS  Google Scholar 

  40. I.V. Korolkov, K. Ludzik, A.L. Kozlovskiy, M.S. Fadeev, A.E. Shumskaya, Y.G. Gorin, B. Marciniak, M. Jazdzewska, D. Chudoba, R. Kontek, A. Nazarova, V.S. Rusakov, M.V. Zdorovets, Carboranes immobilization on Fe3O4 nanocomposites for targeted delivery. Mater. Today Commun. 24, 101247 (2020). https://doi.org/10.1016/j.mtcomm.2020.101247

    Article  CAS  Google Scholar 

  41. Z. Ruan, P. Yuan, T. Jing, T. Xing, L. Yan, pH-sensitive polypeptide conjugated with carborane clusters and cyanine for NIR bioimaging and multi-therapies. Macromol. Res. 26(3), 270–277 (2018). https://doi.org/10.1007/s13233-018-6034-z

    Article  CAS  Google Scholar 

  42. D. Reichert, M.T. Erkkilae, J. Gesperger, L.I. Wadiura, A. Lang, T. Roetzer-Pejrimovsky, A. Woehrer, M. Wilzbach, C. Hauger, W. Drexler, B. Kiesel, G. Widhalm, R.A. Leitgeb, A. Unterhuber, M. Andreana, Improved protoporphyrin IX-guided neurosurgical tumor detection with frequency-domain fluorescence lifetime imaging. Appl. Sci. 12(3), 1002 (2022)

    Article  CAS  Google Scholar 

  43. M. Hammer, R. Simon, D. Meller, M. Klemm, Combining fluorescence lifetime with spectral information in fluorescence lifetime imaging ophthalmoscopy (FLIO). Biomed. Opt. Express 13(10), 5483–5494 (2022). https://doi.org/10.1364/BOE.457946

    Article  PubMed  PubMed Central  Google Scholar 

  44. H. Collini, M.D. Jackson, Zeta potential of crude oil in aqueous solution. Adv. Colloid Interface Sci. 320, 102962 (2023). https://doi.org/10.1016/j.cis.2023.102962

    Article  CAS  PubMed  Google Scholar 

  45. S. Benamer Oudih, D. Tahtat, A. Nacer Khodja, M. Mahlous, Y. Hammache, A.-E. Guittoum, S. Kebbouche Gana, Chitosan nanoparticles with controlled size and zeta potential. Polym. Eng. Sci. J. 63(3), 1011–1021 (2023). https://doi.org/10.1002/pen.26261

    Article  CAS  Google Scholar 

  46. P. Siani, G. Frigerio, E. Donadoni, C. Di Valentin, Modeling zeta potential for nanoparticles in solution: water flexibility matters. J. Phys. Chem. C 127(19), 9236–9247 (2023). https://doi.org/10.1021/acs.jpcc.2c08988

    Article  CAS  Google Scholar 

  47. S. Hong, D.-S. Lee, G.-W. Bae, J. Jeon, H.K. Kim, S. Rhee, K.O. Jung, In vivo stem cell imaging principles and applications. IJSC (2023). https://doi.org/10.15283/ijsc23045

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the scientific research foundation of Jiangsu University (Grant no. 5501290005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingxia Chu, Chichong Lu or Guofan Jin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4237 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, T., Liu, Y., Zhou, M. et al. Preparation, sustained release and cell imaging studies of rhodamine 6G@-nido-carborane fluorescent polymer. Macromol. Res. (2024). https://doi.org/10.1007/s13233-024-00252-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13233-024-00252-y

Keywords

Navigation