Skip to main content
Log in

Probiotics-loaded microcapsules from gas-assisted microfluidics for inflammatory bowel disease treatment

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is a kind of chronic inflammatory disease that is difficult to cure completely and may cause cancer. Modulating the intestinal flora is believed to be a feasible approach for IBD treatment. However, the traditional probiotics delivery systems often suffer from the inactivation caused by gastric acid. Herein, we proposed a novel probiotics-loaded microcapsule generated from a gas-assisted microfluidic platform. The microcapsules were composed of alginate shells and probiotics-containing cores, and exhibited good sphericity and biocompatibility, and had an average size of about 325 μm and a coefficient of variation of 2.57%. When the probiotics-loaded microcapsules were used for the IBD treatment of mice, they displayed good therapeutic effects in modulating oxidative stress and inflammation as well as protecting the intestinal barrier. These features indicate that the prepared probiotics-loaded microcapsules could be used as new materials for IBD treatment.

Graphical abstract

The gas-assisted microfluidic platform was employed to construct probiotics-containing microcapsules for inflammatory bowel disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Zhang et al., Sci. Adv. 8, eabp9882 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C.X. Shi et al., Sci. Adv. 8, eabj2372 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Liu et al., Sci. Adv. 8, eabp8798 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N. Kulkarni et al., Carbohydr. Polym. 288, 119351 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. C. Zhao et al., Bioact. Mater. 6, 1653 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. C.J. Wang et al., J. Control Release 345, 1 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. C. Zhao et al., Eng. Regen. 2, 116 (2021)

    Google Scholar 

  8. J. Gan et al., Appl. Mater. Today 25, 101231 (2021)

    Article  Google Scholar 

  9. C. Zhao et al., Sci. Bull. 64, 1418 (2019)

    Article  Google Scholar 

  10. B.M. Shah et al., Int. J. Biol. Macromol. 165, 722 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. D.R. Friend, Adv. Drug. Deliv. Rev. 57, 247 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. B.P. Abraham, E.M.M. Quigley, Gastroenterol. Clin. N. 46, 769 (2017)

    Article  Google Scholar 

  13. D. Curro et al., Br. J. Pharmacol. 174, 1426 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. S. Zhao et al., Adv. Funct. Mater. 30, 2004692 (2020)

    Article  CAS  Google Scholar 

  15. Y. Derwa et al., Aliment Pharmacol. Ther. 46, 389 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. Z.H. Shen et al., World J. Gastroentero. 24, 5 (2018)

    Article  CAS  Google Scholar 

  17. K.L. Glassner, B.P. Abraham, E.M.M. Quigley, J. Allergy Clin. Immunol. 145, 16 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. C. Zhao et al., ACS Appl. Mater. Interfaces 12, 42586 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. H. Luo et al., Pharmacol. Res. 178, 106146 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. M.K. Yadav et al., Appl. Microbiol. Biotechnol. 106, 505 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P. Wan et al., J Clean. Prod. 297, 126721 (2021)

    Article  CAS  Google Scholar 

  22. L. Yang et al., ACS Nano 15, 20600 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. S. Mallakpour, V. Behranvand, J. Clean. Prod. 312, 127513 (2021)

    Article  CAS  Google Scholar 

  24. B. Wang et al., J. Clean. Prod. 298, 126878 (2021)

    Article  CAS  Google Scholar 

  25. H. Xi et al., J. Clean. Prod. 313, 127773 (2021)

    Article  CAS  Google Scholar 

  26. H. Wang et al., Sci. Adv. 4, eaat2816 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  27. L. Yang et al., Nanomicro. Lett. 14, 4 (2022)

    Article  Google Scholar 

  28. X. Wei et al., Sens. Actuators B Chem. 346, 130464 (2021)

    Article  CAS  Google Scholar 

  29. Z. Zhao et al., ACS Nano 15, 13041–13054 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. H. Wang et al., Sci. Adv. 6, eaay1438 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Yang et al., Bioact. Mater. 6, 4801 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Yan et al., Small 17, e2100479 (2021)

    Article  PubMed  Google Scholar 

  33. Y. Hu et al., Eng. Regen. 3, 154 (2022)

    Google Scholar 

  34. Q. Qu et al., Adv. Mater. Technol. 8, 2201559 (2023)

    Article  CAS  Google Scholar 

  35. H. Liu et al., Adv Sci 8, e2101619 (2021)

    Article  Google Scholar 

  36. Q. Qu et al., Chem. Eng. J. 428, 132607 (2022)

    Article  CAS  Google Scholar 

  37. G. Chen et al., J. Coll. Interface Sci. 607, 1382 (2022)

    Article  CAS  Google Scholar 

  38. T. Ramdhan et al., Trends Food Sci. Tech. 106, 150 (2020)

    Article  CAS  Google Scholar 

  39. J.L. Drury, R.G. Dennis, D.J. Mooney, Biomaterials 25, 3187 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. G. Kaklamani et al., J Mech. Behav. Biomed. Mater. 36, 135 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. M. Nutzl et al., J. Mech. Behav. Biomed. Mater. 134, 105397 (2022)

    Article  PubMed  Google Scholar 

  42. S. Zhen et al., Macromol. Res. 28, 644 (2020)

    Article  CAS  Google Scholar 

  43. C. Zhao et al., Macromol. Res. 27, 888 (2019)

    Article  CAS  Google Scholar 

  44. J. Kim et al., Carbohydr. Polym. 272, 118462 (2021)

    Article  CAS  PubMed  Google Scholar 

  45. N. Nezamdoost-Sani et al., Food Biosci. 52, 102433 (2023)

    Article  CAS  Google Scholar 

  46. T.W. Yeung et al., Food Funct. 7, 1797 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Health Commission of Jiangxi Province (SKJP220219272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuihong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 862 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, C., Yu, H. et al. Probiotics-loaded microcapsules from gas-assisted microfluidics for inflammatory bowel disease treatment. Macromol. Res. 31, 817–825 (2023). https://doi.org/10.1007/s13233-023-00166-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00166-1

Keywords

Navigation