Skip to main content
Log in

Reinforcing Efficiency of Pyrolyzed Spent Coffee Ground in Styrene-Butadiene Rubber

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This research aimed to study the reinforcing efficiency of pyrolyzed spent coffee ground (SCG) in styrene-butadiene rubber (SBR). The SCG was initially treated at elevated temperatures of 700 °C and 900 °C (under nitrogen gas) before being characterized by various techniques, e.g., particle size analysis, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. After being added into SBR, properties of the rubber compounds and vulcanizates were determined. The results showed that pyrolysis of SCG at 700 °C and 900 °C significantly reduced the average particle size from 39.8 µm to 27.3 µm and 25.3 µm, respectively. The addition of pyrolyzed SCG into SBR resulted in the increases of both rubber-filler interaction, as evidenced from the increase of bound rubber content, and crosslink density, leading to the improvement of mechanical properties of the rubber vulcanizates when compared with the addition of untreated SCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Gardiner, M. V. Tongeren, and M. Harrington, Occup. Environ. Med., 58, 496 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. Niranjan and A. K. Thakur, Front. Immunol., 8, 763 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. T. H. Mokhothu, and M. J. John, Handb. Compos. Renewable Mater., 1, 243 (2017).

    Article  CAS  Google Scholar 

  4. F. H. Isikgor and C. R. Becer, Polym. Chem., 6, 4497 (2015).

    Article  CAS  Google Scholar 

  5. G. Gaidukova, O. Platnieks, A. Aunins, A. Barkane, C. Ingrao, and S. Gaidukovs, RSC Adv., 11, 18580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. Barana, M. Orlandi, A. Salanti, L. Castellani, T. Hanel, and L. Zoia, Ind. Crops Prod., 141, 111822 (2019).

    Article  CAS  Google Scholar 

  7. R. Bodirlau, C. A. Teaca, and I. Spiridon, Composites, Part B, 44, 575 (2013).

    Article  CAS  Google Scholar 

  8. M. K. Mansor and R. C. Ali, Adv. Mater. Res., 1133, 593 (2016).

    Article  Google Scholar 

  9. H. Ghani, S. F. Abd Karim, R. Ramli, M. Musa, and J. Jaapar, Key Eng. Mater., 797, 249 (2019).

    Article  Google Scholar 

  10. E. Azwar and M. Hakkarainen, ISRN Polym. Sci., 2012, 463298 (2012).

    Google Scholar 

  11. W. Ruangudomsakul, C. Ruksakulpiwat, and R. Yupaporn, Adv. Mater. Res., 747, 371 (2013).

    Article  CAS  Google Scholar 

  12. R. D. Santos, D. Agostini, F. Cabrera, E. Aparecido, P. Reis, M. Ruiz, E. Budemberg, S. Teixeira, and A. Job, Polímeros, 24, 646 (2014).

    Article  CAS  Google Scholar 

  13. J. Yang, Y. C. Ching, and C. H. Chuah, Polymers, 11, 751 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  14. M. M. Tun, H. Raclavská, D. Juchelková, J. Růžičková, M. Šafář, K. Štrbová, and P. Gikas, J. Environ. Manage., 275, 111204 (2020).

    Article  PubMed  Google Scholar 

  15. T. W. Counts, Number of Coffee Bags Produced, https://www.theworldcounts.com/challenges/consumption/foods-and-beverages/environmental-effects-of-coffee-production/story (accessed October12th, 2020).

  16. L. Blinová, M. Sirotiak, A. Bartošová, and M. Soldán, Res. Pap. — Fac. Mater. Sci. Technol., Slovak Univ. Technol., 25, 91 (2017).

    Google Scholar 

  17. S. I. Mussatto, L. F. Ballesteros, S. Martins, and J. A. Teixeira, Sep. Purif. Technol., 83, 173 (2011).

    Article  CAS  Google Scholar 

  18. S. N. Caetano, V. S. M. Silva, and T. M. Mata, Chem. Eng. Trans., 26, 267 (2012).

    Google Scholar 

  19. K. Kante, C. Nieto-Delgado, J. R. Rangel-Mendez, and T. J. Bandosz, J. Hazard. Mater., 201–202, 141 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. M. S. Kim, H. G. Min, N. Koo, J. Park, S. H. Lee, G. I. Bak, and J. G. Kim, J. Environ. Manage., 146, 124 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. N. Fiol, C. Escudero, and I. Villaescusa, Sep. Sci. Technol., 43, 582 (2008).

    Article  CAS  Google Scholar 

  22. K. Somnuk, P. Eawlex, and G. Prateepchaikul, Agric. Nat. Resour., 51, 181 (2017).

    Google Scholar 

  23. K. Passadis, V. Fragoulis, V. Stoumpou, J. Novakovic, E. M. Barampouti, S. Mai, K. Moustakas, D. Malamis, and M. Loizidou, Waste Biomass Valorization, 11, 5295 (2020).

    Article  CAS  Google Scholar 

  24. R. Campos-Vega, G. Loarca-Piña, H. A. Vergara-Castañeda, and B. D. Oomah, Trends Food Sci. Technol., 45, 24 (2015).

    Article  CAS  Google Scholar 

  25. L. F. Ballesteros, J. A. Teixeira, and S. I. Mussatto, Food Bioprocess Technol., 7, 3493 (2014).

    Article  CAS  Google Scholar 

  26. N. Suaduang, S. Ross, G. M. Ross, S. Pratumshat, and S. Mahasaranon, Mater. Today: Proc., 17, 2104 (2019).

    CAS  Google Scholar 

  27. S. H. Sung, Y. Chang, and J. Han, Carbohydr. Polym., 169, 495 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. N. Kanai, T. Honda, N. Yoshihara, T. Oyama, A. Naito, K. Ueda, and I. Kawamura, Cellulose, 27, 5017 (2020).

    Article  CAS  Google Scholar 

  29. D. García-García, A. Carbonell, M. D. Samper, D. García-Sanoguera, and R. Balart, Compos. Part B, 78, 256 (2015).

    Article  CAS  Google Scholar 

  30. C. Siriwong, S. Boopasiri, V. Jantarapibun, B. Kongsook, S. Pattanawanidchai, and P. Sae-Oui, J. Appl. Polym. Sci., 135, 46060 (2018).

    Article  CAS  Google Scholar 

  31. A. I. Dzulkifli, C. M. S. Said, C. C. Han, and A. F. Mohd, Adv. Mater. Res., 1134, 75 (2015).

    Article  Google Scholar 

  32. M. Prudenziati, Sens. Actuat. A, 25, 227 (1990).

    Article  Google Scholar 

  33. V. T. Nguyen, T. B. Nguyen, C. W. Chen, C. M. Hung, T. D. H. Vo, J. H. Chang, and C. D. Dong, Bioresour. Technol., 284, 197 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. P. Jagdale, D. Ziegler, M. Rovere, J. M. Tulliani, and A. Tagliaferro, Sensors, 19, 801 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  35. A. Méndez, E. Cárdenas-Aguiar, J. Paz-Ferreiro, C. Plaza, and G. Gascó, Biol. Agric. Hortic., 33, 40 (2017).

    Article  Google Scholar 

  36. C. E. Brewer, V. J. Chuang, C. A. Masiello, H. Gonnermann, X. Gao, B. Dugan, L. E. Driver, P. Panzacchi, K. Zygourakis, and C. A. Davies, Biomass Bioenergy, 66, 176 (2014).

    Article  CAS  Google Scholar 

  37. W. Ding, X. Dong, I. M. Ime, B. Gao, and L. Q Ma, Chemosphere, 105, 68 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. J. H. Yuan, R. K. Xu, and H. Zhang, Bioresour. Technol., 102, 3488 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. V. T. Nguyen, T. B. Nguyen, C. W. Chen, C. M. Hung, C. P. Huang, and C. D. Dong, Bioresour. Technol., 292, 121954 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. A. I. Medalia and L. W. Richards, J. Colloid Interface Sci., 40, 233 (1972).

    Article  CAS  Google Scholar 

  41. W. Hofmann, Rubber Technology Handbook, Hanser, Munich, 1996.

    Google Scholar 

  42. P. Quosai, A. Anstey, A. Mohanty, and M. Misra, R. Soc. Open Sci., 5, 171970 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. O. Das, A. K. Sarmah, Z. Zujovic, and D. Bhattacharyya, Sci. Total Environ., 550, 133 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. E. Pusceddu, Int. J. New Technol. Res., 3, 39 (2017).

    Google Scholar 

  45. A. Kato, Y. Ikeda, R. Tsushi, Y. Kokubo, and N. Kojima, Colloid Polym. Sci., 291, 2101 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Research and Academic Affairs Promotion Fund, Faculty of Science, Khon Kaen University, Materials Chemistry Research Center (MCRC) and Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, the Science Achievement Scholarship of Thailand (SAST) for permitting the use of testing equipment and for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chomsri Siriwong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boopasiri, S., Sae-Oui, P., Lundee, S. et al. Reinforcing Efficiency of Pyrolyzed Spent Coffee Ground in Styrene-Butadiene Rubber. Macromol. Res. 29, 597–604 (2021). https://doi.org/10.1007/s13233-021-9072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9072-x

Keywords

Navigation