Skip to main content

Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries

Abstract

The increase in a graphite electrode thickness is an inevitable to achieve the high energy density of lithium ion batteries (LIBs). However, the increment of electrode thickness results in a significant degradation of the electrochemical performances due to a poor kinetic associated with lithium ion caused by a long lithium ion diffusion length and large polarization. To improve the kinetic associated with lithium ion, the lithium salt of carboxymethyl cellulose (Li-CMC) is introduced as a binder. The Li-CMC is synthesized from sodium salt of carboxymethyl cellulose (Na-CMC) via simple two-step method. The thick graphite electrode prepared with Li-CMC exhibits much improved electrochemical performances, including a specific capacity and a cycle performance, compared to that with Na-CMC. The voltage profiles, electrochemical impedance spectroscopy (EIS), and rate capabilities results indicate that these improvements are attributed to improved lithium ion kinetics and low polarization by employing Li-CMC binder.

This is a preview of subscription content, access via your institution.

References

  1. S. W. Lee, S. W. Choi, S. M. Jo, B. D. Chin, D. Y. Kim, and K. Y. Lee, J. Power Sources, 163, 41 (2006).

    CAS  Article  Google Scholar 

  2. K. Kleiner, Nature, 441, 1046 (2006).

    Article  Google Scholar 

  3. Y. Sato, K. Nagayama, Y. Sato, and T. Takamura, J. Power Sources, 189, 490 (2009).

    CAS  Article  Google Scholar 

  4. S. H. Wen, Z. F. Hou, and K. L. Han, J. Phys. Chem. C, 113, 18436 (2009).

    CAS  Article  Google Scholar 

  5. A. Stein, Nat. Nanotechnol., 6, 262 (2011).

    CAS  Article  Google Scholar 

  6. S. K. Martha, J. Nanda, G. M. Veith, and N. J. Dudney, J. Power Sources, 199, 220 (2012).

    CAS  Article  Google Scholar 

  7. S. K. Martha, J. Grinblat, O. Haik, E. Zinigrad, T. Drezen, J. H. Miners, I. Exnar, A. Kay, B. Markovsky, and D. Aurbach, Angew. Chem. Int. Ed., 48, 8559 (2009).

    CAS  Article  Google Scholar 

  8. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001).

    CAS  Article  Google Scholar 

  9. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008).

    CAS  Article  Google Scholar 

  10. B. A. Boukamp, G. C. Lesh, and R. A. Huggins, J. Electrochem. Soc., 128, 725 (1981).

    CAS  Article  Google Scholar 

  11. H. Gabrisch, J. Wilcox, and M. M. Doeff, Electrochem. Solid-State Lett., 11, A25 (2008).

  12. F. P. Campana, H. Buqa, P. Novak, R. Kotz, and H. Siegenthaler, Electrochem. Commun., 10, 1590 (2008).

    CAS  Article  Google Scholar 

  13. R. Kostecki and F. McLarnon, J. Power Sources, 119, 550 (2003).

    Article  Google Scholar 

  14. E. Markervich, G. Salitra, M.D. Levi, and D. Aurbach, J. Power Sources, 146, 146 (2005).

    CAS  Article  Google Scholar 

  15. L. Qiu, Z. Q. Shao, M. S. Yang, W. J. Wang, F. J. Wang, J. L. Wan, J. Q. Wang, Y. D. Bi, and H. T. Duan, Cellulose, 21, 615 (2014).

    CAS  Article  Google Scholar 

  16. L. Qiu, Z. Q. Shao, M. L. Liu, J. Q. Wang, P. F. Li, and M. Zhao, Carbohydr. Polym., 102, 986 (2014).

    CAS  Article  Google Scholar 

  17. L. Xie, L. Zhao, J. L. Wan, Z. Q. Shao, F. J. Wang, and S. Y. Lv, J. Electrochem. Soc., 159, A499 (2012).

  18. L. Qiu, Z. Q. Shao, D. X. Wang, W. J. Wang, F. J. Wang, and J. Q. Wang, Carbohydr. Polym., 111, 588 (2014).

    CAS  Article  Google Scholar 

  19. J. Li, R. B. Lewis, and J. R. Dahn, Electrochem. Solid St., 10, A17 (2007).

  20. J. H. Lee, J. S. Kim, Y. C. Kim, D. S. Zang, Y. M. Choi, W. Il Park, and U. Paik, Electrochem. Solid-State Lett., 11, A175 (2008).

  21. J. H. Lee, U. Paik, V. A. Hackley, and Y. M. Choi, J. Electrochem. Soc., 152, A1763 (2005).

  22. J. Drofenik, M. Gaberscek, R. Dominko, F.W. Poulsen, M. Mogensen, S. Pejovnik, and J. Jamnik, Electrochim. Acta, 48, 883 (2003).

    CAS  Article  Google Scholar 

  23. L. Qiu, Z. Shao, W. Wang, F. Wang, D. Wang, Z. Zhou, P. Xiang, and C. Xu, Rsc Adv., 4, 24859 (2014).

    CAS  Article  Google Scholar 

  24. Y. C. Chang, J. H. Jong, and G. T. K. Fey, J. Electrochem. Soc., 147, 2033 (2000).

    CAS  Article  Google Scholar 

  25. G. Y. Kim, Y. J. Park, K. H. Jung, D. J. Yang, J. W. Lee, and H. G. Kim, J. Appl. Electrochem., 38, 1477 (2008).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ungyu Paik.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kil, K.C., Paik, U. Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries. Macromol. Res. 23, 719–725 (2015). https://doi.org/10.1007/s13233-015-3094-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3094-1

Keywords

  • lithium salt of carboxymethyl cellulose (Li-CMC)
  • water soluble binder
  • thick electrode
  • lithium ion batteries (LIBs)