Skip to main content
Log in

Morphological property and in vitro enzymatic degradation of modified chitosan as a scaffold

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erraum to this article was published on 04 January 2012

Abstract

Chitosan (CS) was proposed as a promising candidate scaffold for tissue engineering. However, some drawbacks of natural CS remain. The current study modified CS by conjugating thiol to CS polymer (Thio-CS) and substantiated its three-dimensional microstructure and physical properties such as swelling or degradation. The Thio-CS was obtained by CS modification using 2-iminothiolane-HCl (2-IT). Because of the formation of disulfide bonds between thiol moieties based on oxidation of the immobilized thiol groups of CS, Thio-CS exhibits in situ gelling properties according to the reducing amount of free thiol. The content of the thiol group was increased as the amount of 2-IT increased. The swelling test demonstrated that Thio-CS can absorb up to 3.5 times its weight of phosphate buffered saline within 1 h and that the pore size and amount significantly increased with incubation time. The Thio-CS enzymatic degradation rate according to velocity was investigated. The results showed that Thio-CS was more resistant to lysozyme as viscosity increased. Thio-CS sponges were fabricated using freezedrying. The lyophilized Thio-CS had a homogeneous honeycomb-like shape, and its pores were relatively smaller (<2 μm) than those of unmodified CS (>2 μm). These results suggest that Thio-CS might be a candidate regenerative therapeutic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Soundrapandian, S. Datta, and B. Sa, Crit. Rev. Ther. Drug Carrier Syst., 24, 493 (2007).

    CAS  Google Scholar 

  2. C. Soundrapandian, B. Sa, and S. Datta, AAPS Pharm-SciTech, 10, 1158 (2009).

    Article  CAS  Google Scholar 

  3. S. N. Park, J. C. Park, H. O. Kim, M. J. Song, and H. Suh, Biomaterials, 23, 1205 (2002).

    Article  CAS  Google Scholar 

  4. L. E. Freed, G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer, Biotechnology, 12, 689 (1994).

    Article  CAS  Google Scholar 

  5. A. P. Balgude, X. Yu, A. Szymanski, and R. V. Bellamkonda, Biomaterials, 22, 1077 (2001).

    Article  CAS  Google Scholar 

  6. R. Bellamkonda, J. P. Ranieri, N. Bouche, and P. Aebischer, J. Biomed. Mater. Res., 29, 663 (1995).

    Article  CAS  Google Scholar 

  7. S. E. Stabenfeldt, A. J. Garcia, and M. C. LaPlaca, J. Biomed. Mater. Res. A, 77, 718 (2006).

    Google Scholar 

  8. M. C. Tate, D. A. Shear, S. W. Hoffman, D. G. Stein, and M. C. LaPlaca, Biomaterials, 22, 1113 (2001).

    Article  CAS  Google Scholar 

  9. K. E. Crompton, J. D. Goud, R. V. Bellamkonda, T. R. Gengenbach, D. I. Finkelstein, M. K. Horne, and J. S. Forsythe, Biomaterials, 28, 441 (2007).

    Article  CAS  Google Scholar 

  10. T. Freier, H. S. Koh, K. Kazazian, and M. S. Shoichet, Biomaterials, 26, 5872 (2005).

    Article  CAS  Google Scholar 

  11. E. Gamez, Y. Goto, K. Nagata, T. Iwaki, T. Sasaki, and T. Matsuda, Cell Transplant., 13, 549 (2004).

    Article  Google Scholar 

  12. D. Gupta, C. H. Tator, and M. S. Shoichet, Biomaterials, 27, 2370 (2006).

    Article  CAS  Google Scholar 

  13. M. Rinaudo, M. Milas, and P. Le Dung, Int. J. Biol. Macromol., 15, 281 (1993).

    Article  CAS  Google Scholar 

  14. S. Hirano, Biotechnol. Annu. Rev., 2, 237 (1996).

    Article  CAS  Google Scholar 

  15. S. V. Madihally and H. W. Matthew, Biomaterials, 20, 1133 (1999).

    Article  CAS  Google Scholar 

  16. T. Freier, R. Montenegro, H. Shan Koh, and M. S. Shoichet, Biomaterials, 26, 4624 (2005).

    Article  CAS  Google Scholar 

  17. J. K. Suh and H. W. Matthew, Biomaterials, 21, 2589 (2000).

    Article  CAS  Google Scholar 

  18. A. Montembault, C. Viton, and A. Domard, Biomaterials, 26, 933 (2005).

    Article  CAS  Google Scholar 

  19. K. L. Lv, Y. L. Du, and C. M. Wang, Water Sci. Technol., 60, 467 (2009).

    Article  CAS  Google Scholar 

  20. A. Bernkop-Schnurch, M. Hornof, and D. Guggi, Eur. J. Pharm. Biopharm., 57, 9 (2004).

    Article  Google Scholar 

  21. M. S. Kim, Y. J. Choi, I. Noh, and G. Tae, J. Biomed. Mater. Res. A, 83, 674 (2007).

    Google Scholar 

  22. A. Bernkop-Schnurch, M. Hornof, and T. Zoidl, Int. J. Pharm., 260, 229 (2003).

    Article  CAS  Google Scholar 

  23. L. M. Yu, K. Kazazian, and M. S. Shoichet, J. Biomed. Mater. Res. A, 82, 243 (2007).

    Google Scholar 

  24. M. H. Ho, D. M. Wang, H. J. Hsieh, H. C. Liu, T. Y. Hsien, J. Y. Lai, and L. T. Hou, Biomaterials, 26, 3197 (2005).

    Article  CAS  Google Scholar 

  25. C. E. Kast, C. Valenta, M. Leopold, and A. Bernkop-Schnurch, J. Control. Release, 81, 347 (2002).

    Article  CAS  Google Scholar 

  26. D. Guggi, A. H. Krauland, and A. Bernkop-Schnurch, J. Control. Release, 92, 125 (2003).

    Article  CAS  Google Scholar 

  27. L. Yin, J. Ding, C. He, L. Cui, C. Tang, and C. Yin, Biomaterials, 30, 5691 (2009).

    Article  CAS  Google Scholar 

  28. J. Hombach, H. Hoyer, and A. Bernkop-Schnurch, Eur. J. Pharm. Sci., 33, 1 (2008).

    Article  CAS  Google Scholar 

  29. C. E. Kast, W. Frick, U. Losert, and A. Bernkop-Schnurch, Int. J. Pharm., 256, 183 (2003).

    Article  CAS  Google Scholar 

  30. M. D. Hornof, C. E. Kast, and A. Bernkop-Schnurch, Eur. J. Pharm. Biopharm., 55, 185 (2003).

    Article  CAS  Google Scholar 

  31. A. F. Habeeb, Anal. Biochem., 56, 60 (1973).

    Article  CAS  Google Scholar 

  32. R. B. Sashidhar, A. K. Capoor, and D. Ramana, J. Immunol. Methods, 167, 121 (1994).

    Article  CAS  Google Scholar 

  33. J. Y. Lee, D. Musgrave, D. Pelinkovic, K. Fukushima, J. Cummins, A. Usas, P. Robbins, F. H. Fu, and J. Huard, J. Bone Joint Surg. Am., 83A, 1032 (2001).

    Google Scholar 

  34. H. J. Schramm and T. Dulffer, Adv. Exp. Med. Biol., 86A, 197 (1977).

    CAS  Google Scholar 

  35. H. Nazar, D. G. Fatouros, S. M. van der Merwe, N. Bouropoulos, G. Avgouropoulos, J. Tsibouklis, and M. Roldo, Eur. J. Pharm. Biopharm., 77, 225 (2011).

    Article  CAS  Google Scholar 

  36. B. B. Mandal, S. Kapoor, and S. C. Kundu, Biomaterials, 30, 2826 (2009).

    Article  CAS  Google Scholar 

  37. G. P. Andrews, T. P. Laverty, and D. S. Jones, Eur. J. Pharm. Biopharm., 71, 505 (2009).

    Article  CAS  Google Scholar 

  38. N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug Deliv. Rev., 62, 83 (2010).

    Article  CAS  Google Scholar 

  39. C. C. Lin and A. T. Metters, Adv. Drug Deliv. Rev., 58, 1379 (2006).

    Article  CAS  Google Scholar 

  40. L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, and C. Han, Biomaterials, 24, 4833 (2003).

    Article  CAS  Google Scholar 

  41. Y. W. Wang, Q. Wu, J. Chen, and G. Q. Chen, Biomaterials, 26, 899 (2005).

    Article  CAS  Google Scholar 

  42. W. W. Thein-Han and Y. Kitiyanant, J. Biomed. Mater. Res. B: Appl. Biomater., 80, 92 (2007).

    Google Scholar 

  43. P. Arpornmaeklong, P. Pripatnanont, and N. Suwatwirote, Int. J. Oral. Maxillofac. Surg., 37, 357 (2008).

    Article  CAS  Google Scholar 

  44. E. Behravesh, M. D. Timmer, J. J. Lemoine, M. A. Liebschner, and A. G. Mikos, Biomacromolecules, 3, 1263 (2002).

    Article  CAS  Google Scholar 

  45. N. Shanmugasundaram, P. Ravichandran, P. N. Reddy, N. Ramamurty, S. Pal, and K. P. Rao, Biomaterials, 22, 1943 (2001).

    Article  CAS  Google Scholar 

  46. K. Y. Lee, W. S. Ha, and W. H. Park, Biomaterials, 16, 1211 (1995).

    Article  CAS  Google Scholar 

  47. K. M. Varum, H. K. Holme, M. Izume, B. T. Stokke, and O. Smidsrod, Biochim. Biophys. Acta, 1291, 5 (1996).

    Article  Google Scholar 

  48. A. Kristiansen, K. M. Varum, and H. Grasdalen, Biochim. Biophys. Acta, 1425, 137 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Tae Koh.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s13233-012-0193-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, IH., Jang, W.G., Lim, HP. et al. Morphological property and in vitro enzymatic degradation of modified chitosan as a scaffold. Macromol. Res. 19, 1250–1256 (2011). https://doi.org/10.1007/s13233-011-1203-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-1203-3

Keywords

Navigation