Skip to main content
Log in

Hyperbranched electroactive azo polyamide based on oligoaniline: Synthesis, characterization, and dielectric properties

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A novel hyperbranched electroactive azo polyamide containing oligoaniline was synthesized by oxidative coupling polymerization. The detailed characteristics of the obtained polyamide were systematically studied by Fourier transform infrared (FTIR) spectra, nuclear magnetic resonance (1H NMR) spectroscopy, and gel permeation chromatography (GPC). The thermogravimetric analysis (TGA) revealed a good thermal resistance of the polymer. The photoisomerization process and doping process of the polymer were monitored with ultraviolet-visible spectroscopy. Further, the electrochemical behavior of the polymer was explored by cyclic voltammogram (CV), and the mechanism of electrochemical oxidation process was studied in detail. The polymer in the HCl-doped form possessed much higher dielectric constants compared with that of the similar linear polymer reported before, mainly due to the highly branched three-dimensional molecular architecture and the high content of oligoaniline segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001).

    Article  CAS  Google Scholar 

  2. A. J. Heeger, J. Phys. Chem. B, 105, 8475 (2001).

    Article  CAS  Google Scholar 

  3. D. T. Mcquade, A. E. Pullen, and T. M. Swager, Chem. Rev., 100, 2537 (2000).

    Article  CAS  Google Scholar 

  4. D. W. Hatchett and M. Josowicz, Chem. Rev., 108, 746 (2008).

    Article  CAS  Google Scholar 

  5. J. Jang, J. Ha, and S. Kim, Macromol. Res., 15, 154 (2007).

    Article  CAS  Google Scholar 

  6. A. M. Kenwright, W. J. Feast, P. Adams, A. J. Milton, A. P. Monkman, and B. J. Say, Polymer, 33, 429 (1992).

    Article  Google Scholar 

  7. I. Kulszewicz-Bajer, I. Rozalska, and M. Kurylek, New J. Chem., 28, 669 (2004).

    Article  CAS  Google Scholar 

  8. Z. X. Wei, T. Laitinen, B. Smarsly, O. Ikkala, and C. F. J. Faul, Angew. Chem. Int. Ed., 44, 751 (2005).

    Article  CAS  Google Scholar 

  9. L. T. Cai, M. A. Cabassi, H. Yoon, O. M. Cabarcos, C. L. McGuiness, A. K. Flatt, D. L. Allara, J. M. Tour, and T. S. Mayer, Nano Lett., 5, 2365 (2005).

    Article  CAS  Google Scholar 

  10. Z. X. Wei and C. F. J. Faul, Macromol. Rapid Commun., 29, 280 (2008).

    Article  CAS  Google Scholar 

  11. T. Canteenwala, V. Anantharaj, S. V. Patil, M. Halder, and L. Y. Chiang, J. Macromol. Sci.: Pure Appl. Chem., 39, 1069 (2002).

    Article  Google Scholar 

  12. S. Quillard, B. Corraze, M. Poncet, J. Y. Mevellec, J. P. Buisson, M. Evain, W. Wang, and A. G. MacDiarmid, Synth. Met., 137, 921 (2003).

    Article  CAS  Google Scholar 

  13. S. P. Surwade, S. R. Agnihotra, V. Dua, N. Manohar, S. Jain, S. Ammu, and S. K. Manohar, J. Am. Chem. Soc., 131, 12528 (2009).

    Article  CAS  Google Scholar 

  14. R. Chen and B. C. Benicewicz, Macromolecules, 36, 6333 (2003).

    Article  CAS  Google Scholar 

  15. J. B. Gao, D. G. Liu, J. M. Sansinena, and H. L. Wang, Adv. Funct. Mater., 14, 537 (2004).

    Article  CAS  Google Scholar 

  16. D. M. Chao, X. F. Lu, J. Y. Chen, X. G. Zhao, L. F. Wang, W. J. Zhang, and Y. Wei, J. Polym. Sci. Part A: Polym. Chem., 44, 477 (2006).

    Article  CAS  Google Scholar 

  17. S. W. Liang, J. Claude, K. Xu, and Q. Wang, Macromolecules, 41, 6265 (2008).

    Article  CAS  Google Scholar 

  18. J. F. Zhang, D. M. Chao, L. L. Cui, X. C. Liu, and W. J. Zhang, Macromol. Chem. Phys., 210, 1739 (2009).

    Article  CAS  Google Scholar 

  19. F. F. Fang, B. M. Lee, and H. J. Choi, Macromol. Res., 18, 99 (2010).

    Article  Google Scholar 

  20. C. H. Ho, C. D. Liu, C. H. Hsieh, K. H. Hsieh, and S. N. Lee, Synth. Met., 158, 63 (2008).

    Article  Google Scholar 

  21. S. Boye, H. Komber, P. Friedel, and A. Lederer, Polymer, 51, 4110 (2010).

    Article  CAS  Google Scholar 

  22. D. H. Zhang, D. M. Jia, and Z. H. Zhou, Macromol. Res., 17, 289 (2009).

    Article  CAS  Google Scholar 

  23. C. J. Hawker, R. Lee, and J. M. Frechet, J. Am. Chem. Soc., 113, 4583 (1991).

    Article  CAS  Google Scholar 

  24. A. Hirao, Y. Tsunoda, A. Matasuo, K. Sugiyarna, and T. Watanabe, Macromol. Res., 14, 271 (2006).

    Article  Google Scholar 

  25. G. Palui and A. Banerjee, J. Phys. Chem. B, 112, 10107 (2008).

    Article  CAS  Google Scholar 

  26. C. Basavaraja, R. Pierson, D. S. Huh, A. Venkataraman, and S. Basavaraja, Macromol. Res., 17, 609 (2009).

    Article  CAS  Google Scholar 

  27. J. Yue, A. J. Epstein, Z. Zhong, P. K. Gallagher, and A. G. MacDiarmid, Synth. Met., 41, 765 (1991).

    Article  CAS  Google Scholar 

  28. T. Jeevananda, Siddaramaiah, S. Seetharamu, S. Saravanan, and L. D. Souza, Synth. Met., 140, 247 (2004).

    Article  CAS  Google Scholar 

  29. L. Chen, Y. H. Yu, H. P. Mao, X. F. Lu, L Yao, W. J. Zhang, and Y. Wei, Chem. J. Chinese Universities, 9, 1768 (2004).

    Google Scholar 

  30. L. Chen, Y. H. Yu, H. P. Mao, X. F. Lu, W. J. Zhang, and Y. Wei, Synth. Met., 149, 129 (2005).

    Article  CAS  Google Scholar 

  31. A. M. Showkat, K. P. Lee, A. Y. Gopalan, and S. H. Kim, Macromol. Res., 15, 575 (2007).

    Article  Google Scholar 

  32. A. A. Nekrasov, V. F. Ivanov, and A. V. Vannikov, J. Electroanal. Chem. (Lausanne Switz), 482, 11 (2000).

    Article  CAS  Google Scholar 

  33. M. Guo, X. Z. Yan, Y. Kwon, T. Hayakawa, M. Kakimoto, and T. Goodson, J. Am. Chem. Soc., 128, 14820 (2006).

    Article  CAS  Google Scholar 

  34. C. C. Wang, J. F. Song, H. M. Bao, Q. D. Shen, and C. Z. Yang, Adv. Funct. Mater., 18, 1299 (2008).

    Article  CAS  Google Scholar 

  35. B. Belaabed, S. Lamouri, N. Naar, P. Bourson, and S. O. S. Hamady, Polym. J., 42, 546 (2010).

    Article  CAS  Google Scholar 

  36. V. I. Vettegren, V. A. Zakrevski, A. N. Smirnov, and N. T. Sudar, Phys. Solid State, 52, 1774 (2010).

    Article  CAS  Google Scholar 

  37. J. X. Lu, K. S. Moon, B. K. Kim, and C. P. Wong, Polymer, 48, 1510 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ce Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, X., Chao, D., He, L. et al. Hyperbranched electroactive azo polyamide based on oligoaniline: Synthesis, characterization, and dielectric properties. Macromol. Res. 19, 1127–1133 (2011). https://doi.org/10.1007/s13233-011-1114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-1114-3

Keywords

Navigation