Skip to main content
Log in

Towards the higher solubility and thermal stability of poly(aniline-co-m-bromoaniline)

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the current study, we have described the synthesis and the physical properties of poly(aniline-co-m-bromoaniline) conducting copolymers. The copolymers of different composition are essentially obtained by varying the molar feed ratio of the two monomers. The higher solubility of the copolymers could be procured as compared to polyaniline (PA) in different solvents. The electrical conductivity has been studied by two-probe method; at room temperature, the conductivity of the copolymer decreases upon increasing the molar ratio of m-bromoaniline monomer. The introduction of bromine (–Br) group reduces the degree of conjugation in the polymer chain. Thus, conduction of electrons is prohibited along the conjugated system. In the thermogravimetric analysis (TGA), a three-stage decomposition of the copolymer has been observed. The copolymers of poly(aniline-co-m-bromoaniline) are thermally stable at high temperature. The composition of the copolymer has been confirmed from the binding energies of C–C, C–N, and C–Br in the XPS study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albuquerque JE, Mattoso LHC, Balogh DT, Faria RM, Masters JG, MacDiarmid AG (2000) A simple method to estimate the oxidation state of polyanilines. Synth Met 113:19–22

    Article  CAS  Google Scholar 

  2. MacDiarmid AG, Epstein AJ (1991) J Am Chem Soc Poly Chem 32:709–710

    CAS  Google Scholar 

  3. Oh SY, Akagi K, Shirakawa H, Araya K (1993) Synthesis and properties of liquid-crystalline polyacetylenes with a phenylcyclohexyl mesogenic moiety in the side group. Macromolecules 26:6203–6206

    Article  CAS  Google Scholar 

  4. U. S. Waware, G.J. Summers, Mohd Rashid, AMS Hamouda, J IONICS. Pp 1–8 (2017) https://doi.org/10.1007/s11581-017-2335-z

    Article  Google Scholar 

  5. Zhao Y, Huang Y, Xue LL, Sun X, Wang Q, Zhang W, Wang K, Zong M (2013) Polyaniline(PANI) coated Zn2SnO4 cube as anode materials for lithium batteries. Polym Test 32:1582–1587

    Article  CAS  Google Scholar 

  6. Kaneko M, Nakamura H (1985) J Chem Soc Chem Commun 6:346–347

    Article  Google Scholar 

  7. Sato M, Tanaka S, Kaeriyama K (1986) J Chem Soc Chem Commun 2:873–874

    Article  Google Scholar 

  8. Anwar-ul-Haq, Shaha A, Bilal S, Holze R (2012) Synth Met 162:356–363

    Article  Google Scholar 

  9. Xin-Gui L, Huang M-R, Feng L, Cai W-J, Jin Z, Yang Y-L (2000) J Polym Sci A Polym Chem 38:4407–4418

    Article  Google Scholar 

  10. Li S, Cao Y, Xue Z (1987) Synth Met 2:141–149

    Article  Google Scholar 

  11. Mattoso LHC, Malmonge LF (1999) Morphology variation as a function of composition for blends of PVDF and a polyaniline derivative. Polymer 40:513–518

    Article  CAS  Google Scholar 

  12. Fan J, Wan M, Zhu D (1998) J. Polym. Sci. Polym Chem 36:3013–3019

    Article  CAS  Google Scholar 

  13. Gupta MC, Umare SS (1992) Studies on poly(o-methoxyaniline). Macromolecules 25:138–142

    Article  CAS  Google Scholar 

  14. Waware US, Hamouda AMS, Hameed AS, Summers GJ (2017) J Funct Mat Lett 4(1750039):10

    Google Scholar 

  15. Cao Y, Smith P, Heeger AJ (1992) Synth. Met. 48:91–97

    Article  CAS  Google Scholar 

  16. H. Bhandari, V. Choudhary, and S. K. Dhawan, Polymer Advanced Technologies, John Willy and Sons, Ltd Pub.online (2008)

  17. N. P. S. Chauhan, A.Rakshit, A.Rohit, and S. C. Ameta, IJCT 18, 118–122 (2011)

  18. Borkar AD, Gupta MC (2001) andS. S. Umare, Polym. Plast. Technol. Eng 40:225–234

    CAS  Google Scholar 

  19. Sahin Y, Percin S, Sahin GO, Alsanacak J (2003) Electrochemical synthesis of poly(2-iodoaniline) and poly(aniline-co-2-iodoaniline) in acetonitrile. ApplPolym Sci 89:1652–1658

    Article  CAS  Google Scholar 

  20. Ye S, Do NT, Dao LH, Vijh AK (1997) Electrochemical preparation and characterization of conducting copolymers: poly (aniline-co-N-butylaniline). Synth Met 88:65–72

    Article  CAS  Google Scholar 

  21. Chen SA, Hwang GW (1995) Water-soluble self-acid-doped conducting polyaniline: structure and properties. J Am Chem Soc 117:10055–10062

    Article  CAS  Google Scholar 

  22. Waware US, Umare SS (2005) Chemical synthesis, spectral characterization and electrical properties of poly(aniline-co-m-chloroaniline). React Funct Polym 65:343–350

    Article  CAS  Google Scholar 

  23. Parveen Saini, Veena Chaudhary,(2013) J Mater Sci 48:797

  24. Huang WS, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 82:2385–2400

    Article  CAS  Google Scholar 

  25. Waware US, Hamouda AMS, Shahul Hameed A, Summers GJ (2017) J Mater Sci Mater Electron 28(14):10693–10699

    Article  CAS  Google Scholar 

  26. Vaman G. Kulkarni, Larry D. Campbell, William R. Mattew (1989) Synth Met. 321–325

  27. Cheng-Ho Chen (2003) Thermal and morphological studies of chemically prepared emeraldine-base-form polyaniline powder. J Appl Polym Sci 89:2142–2148

    Article  Google Scholar 

  28. Yue J, Zhao HW, Cromack KR, Epstein AJ, MacDiarmid AG (1991) Effect of sulfonic acid group on polyaniline backbone. J Am Chem Soc 113:2665–2671

    Article  CAS  Google Scholar 

  29. Santhosh P, Gopalan A, Vasudevan T (2003) In situ UV–visible spectroelectrochemical studies on the copolymerization of diphenylamine with ortho-methoxy aniline. Spectrochim Acta A 59:1427–1439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Qatar University and Aligarh College of Education, Aligarh, for providing necessary research facility. We also thankfully acknowledge the facilities provided by CLU and CAM of Qatar University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umesh S. Waware or Mohd Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waware, U.S., Hamouda, A.M.S., Rashid, M. et al. Towards the higher solubility and thermal stability of poly(aniline-co-m-bromoaniline). Ionics 24, 3837–3844 (2018). https://doi.org/10.1007/s11581-018-2561-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2561-z

Keywords

Navigation