Skip to main content

Advertisement

Log in

Effects of land use on the fungal spore richness in small crater-lake basins of western Uganda

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Mycological tools to estimate the effects of diverse land-use practices on fungal diversity are scarce, because of poor knowledge of the taxonomic diversity of tropical fungi and their response to anthropogenic habitat change. Here, we investigate assemblages of fungal spores, recently deposited in the bottom sediments of 24 small crater lakes in western Uganda, to assess the relationship between the local richness of fungi and environmental variation in the crater basin along regional gradients of natural vegetation and land use. We recovered ~9500 fungal spore specimens, which could be attributed to 216 morphotypes. Using an information-theoretic approach based on the corrected Akaike Information Criterion (AICc), we determined the environmental factors which best explained variation in the diversity of fungal spores among three datasets: (i) the full set of 24 crater basins, (ii) the subset of 22 basins with freshwater lakes, and (iii) the subset of 17 basins partly or completely in agricultural use (cropland, fallow land, pasture and plantation). In these 17 human-impacted crater basins our results revealed a negative relationship between fungal spore richness and the areal fraction of basins in agricultural use. However, this detrimental effect of land use on fungal spore richness was not apparent across the full set of both disturbed and (presently) undisturbed basins. This was due to large variation in fungal spore richness among the undisturbed basins covered either with forest or savannah vegetation, probably resulting from site-specific controls on fungal habitat diversity, such as climatic moisture balance and the composition of natural and/or secondary vegetation. The land-use effects on fungal spore diversity, as documented in this study, suggest that communities of tropical fungi progressively exposed to land-use practices are threatened by species loss. Hence, our study demonstrates the need to develop conservation strategies mitigating the impacts of agriculture on the biodiversity of tropical fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19:716–723

    Article  Google Scholar 

  • Amaranthus MP (1998) The importance and conservation of ectomycorrhizal fungal diversity in forest ecosystems: lessons from Europe and the Pacific Northwest. Gen. Tech. Rep. PNW-GTR-431. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, 15 pp

  • Andrua HJ (2002) Tropical secondary forest management in Africa: Reality and perpectives, Uganda Country paper. Ministry of Water, Lands, and Environment, Kampala. http://www.fao.org/DOCREP/006/J0628E/J0628E65.htm#TopOfPage. Accessed 15 August 2010

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arnolds E (1991) Mycologists and nature conservation. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, Wallingford, pp 243–264

    Google Scholar 

  • Banerjee D (2011) Endophytic fungal diversity in tropical and subtropical plants. Res J Microbiol 6:54–62

    Article  Google Scholar 

  • Bessems I, Verschuren D, Russell JM, Hus J, Mees F, Cumming BF (2008) Palaeolimnological evidence for widespread late 18th century drought across equatorial East Africa. Palaeogeogr Palaeoclimat Palaeoecol 259:107–120

    Article  Google Scholar 

  • Bell A (1983) Dung fungi. An illustrated guide to the coprophilous fungi in New Zealand. Victoria University Press, Wellington

    Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Bills GF, Christensen M, Powell M, Thorn G (2004) Saprobic soil fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi. Elsevier Academic Press, Burlington, pp 271–302

    Chapter  Google Scholar 

  • Birks HJB, Birks HH (1980) Quaternary palaeoecology. Edward Arnold, London

    Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2:1–10

    Google Scholar 

  • Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot 15:235–251

    Article  Google Scholar 

  • Blackford JJ, Innes JB (2006) Linking current environments and processes to fungal spore assemblages: surface NPM data from woodland environments. Rev Palaeobot Palyno 141:179–187

    Article  Google Scholar 

  • Blackmore S (2007) Pollen and spores: microscopic keys to understanding earth’s biodiversity. Plant Syst Evol 263:3–12

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference. Understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Cabello M, Arambarri A (2002) Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province (Argentina). Microbiol Res 157:115–125

    Article  PubMed  Google Scholar 

  • Claessens I (2002) Morphological, physical and chemical features of crater lakes in western Uganda. Masters thesis, Ghent University

  • Caliman A, Pires AF, Esteves FA, Bozelli RL, Farjalla VF (2010) The prominence of and biases in biodiversity and ecosystem functioning research. Biodiver Conserv 19:651–664

    Article  Google Scholar 

  • Canter-Lund H, Lund J (1995) Freshwater algae-their microscopic world explored. Biopress, Bristol

    Google Scholar 

  • Chen Y (1987) Pollen and sediment distribution in a small crater lake in northeast Queensland, Australia. Pollen et Spores 29:89–110

    Google Scholar 

  • Crane JL, Shearer CA (1995) A new Coniochaeta from fresh water. Mycotaxon 54:107–110

    Google Scholar 

  • Crane JL, Shearer CA, Huhndorf SM (1992) A new species of Byssothecium (Loculoascomycetes) from wood in freshwater. Mycologia 84:235–240

    Article  Google Scholar 

  • Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque montains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veg Hist Archaeobot 19:391–408

    Article  Google Scholar 

  • Davidowitz G, Rosenzweig ML (1998) The latitudinal gradient of species diversity among North American grasshoppers within a single habitat: a test of the spatial heterogeneity hypothesis. J Biogeogr 25:553–560

    Article  Google Scholar 

  • Davis MB (1973) Redeposition of pollen grains in lake sediment. Limnol Oceanogr 18:44–52

    Article  Google Scholar 

  • Dearing JA (2006) Climate-human-environment interactions: resolving the past. Clim Past 2:187–203

    Article  Google Scholar 

  • Dennis RWG (1961) Xylarioideae and thamnomycetoideae of Congo. Bull Jard Bot État Bruxelles 31:109–154

    Article  Google Scholar 

  • Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agr Ecosyst Environ 74:77–93

    Article  Google Scholar 

  • Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey

    Google Scholar 

  • Ellis MB (1976) More dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey

    Google Scholar 

  • Ellis MB, Ellis JP (1985) Microfungi on land plants. Croom Helm Ldt, Kent

    Google Scholar 

  • Faegri K, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis by Knut Faegri and Johs. Iversen, IV edition. John Wiley and sons Ltd, Chichester

    Google Scholar 

  • Fox FM (1993) Tropical fungi: their commercial potential. In: Isaac S, Frankland JC, Watling R, Whalley AJS (eds) Aspects of tropical mycology. Cambridge University Press, Cambridge, pp 253–294

    Google Scholar 

  • Franke-Snyder M, Douds DD, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48

    Article  Google Scholar 

  • Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Article  Google Scholar 

  • Gaston KJ (2005) Biodiversity and extinction: species and people. Prog Phys Geog 29:239–247

    Article  Google Scholar 

  • Gelorini V, Verbeken A, van Geel B, Cocquyt C, Verschuren D (2011) Modern non-pollen palynomorphs from East African lake sediments. Rev Palaeobot Palyno 164:143–173

    Article  Google Scholar 

  • Gleason FH, Kagami M, Lefèvre E, Sime-Ngando T (2008) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 22:17–25

    Article  Google Scholar 

  • Goh TK, Ho WH, Hyde KD, Umali TE (1997) New records and species of Sporoschisma and Sporoschismopsis from submerged wood in the tropics. Mycol Res 101:1295–1307

    Article  Google Scholar 

  • Goh TK, Ho WH, Hyde KD, Whitton SR, Umali TE (1998) New records and species of Canalisporium (Hyphomycetes), with a revision of the genus. Can J Bot 76:142–152

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Index Fungorum Partnership (2008) http://www.indexfungorum.org/Index.htm . Accessed 8 September 2010

  • Ingold CT, Hudson HJ (1993) The biology of fungi, 6th edn. Chapman and Hall, London

    Book  Google Scholar 

  • Johnson NC, Pfleger FL (1992) Vesicular-arbuscular mycorrhizae and cultural stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. Special publication no. 54. American Society of Agronomy, Madison, pp 71–99

  • Jones E (1976) Recent advances in aquatic mycology. Elek Science, London

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1), 9 pp. http://palaeo-electronica.org/2001-1/past/issue1-01.htm. Accessed 3 Aug 2010

  • Harrington GN (1974) Fire effects on a Ugandan savanna grassland. Tropical grasslands 8:87–101

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hawksworth DL (1993) The tropical fungal biota: census, pertinence, prophylaxis, and prognosis. In: Isaac S, Frankland JC, Watling R, Whalley AJS (eds) Aspects of tropical mycology. Cambridge University Press, Cambridge, pp 265–293

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1,5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Ho WH, Hyde KD, Hodgkiss IJ (1997) Ascomycetes from tropical freshwater habitats: the genus Savoryella, with two new species. Mycol Res 101:803–809

    Article  Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Hyde KD, Fröhlich J, Taylor JE (1997) Diversity of ascomycetes on palms in the tropics. In: Hyde KD (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong, pp 11–28

    Google Scholar 

  • Hyde KD, Hawksworth DL (1997) Measuring and monitoring the biodiversity of microfungi. In: Hyde KD (ed) Biodiversity of tropical microfungi. University Press, Hong Kong, pp 141–156

    Google Scholar 

  • Jackson ST, Williams JW (2004) Modern analogs in Quaternary palaeoecology: here today, gone yesterday, gone tomorrow? Annu Rev Earth Planet Sci 32:495–537

    Article  CAS  Google Scholar 

  • Jarzen DM, Elsik WC (1986) Fungal palynomorphs recovered from recent river deposits, Luangwa Valley, Zambia. Palynology 10:35–60

    Article  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of fungi, 10th edn. CBS, The Netherlands

    Google Scholar 

  • Köchy M, Rydin H (1997) Biogeography of vascular plants on habitat islands, peninsulas and mainlands in an east-central Swedish agricultural landscape. Nordic J Bot 17:215–223

    Article  Google Scholar 

  • Land S, Schönbeck F (1991) Influence of different soil types on abundance and seasonal dynamics of vesicular arbuscular mycorrhizal fungi in arable soils of North Germany. Mycorrhiza 1:39–44

    Article  Google Scholar 

  • Langdale-Brown I, Osmaston HA, Wilson JG (1964) The vegetation of Uganda and its bearing on land-use. Uganda Government Printer, Entebbe

    Google Scholar 

  • Lynch JM (1983) Soil biotechnology. Blackwell, London

    Google Scholar 

  • MacArthur RH (1958) Population ecology of some Warblers of Northeastern coniferous forests. Ecology 39:599–619

    Article  Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Mazerolle MJ (2004) Appendix 1: Making sense out of Akaike’s Information Criterion(AIC): its use and interpretation in model selection and inference from ecological data. http://archimede.bibl.ulaval.ca/archimede/fichiers/21842/apa.html. Accessed 19 November 2010

  • Melack JM (1978) Morphometric, physical and chemical features of the volcanic crater lakes of western Uganda. Archiv für Hydrobiologie 84:430–453

    CAS  Google Scholar 

  • Mibey RK, Kokwaro JO (1999) Two new species of Meliola (Ascomycetes) from Kenya. Fungal Divers 2:153–157

    Google Scholar 

  • Miller RM, Lodge DJ (1997) Fungal responses to disturbance: agriculture and forestry. In: Wicklow DT, Söderström B (eds) The mycota vol. IV. Environmental and microbial relationships. Springer, Berlin, pp 65–84

    Google Scholar 

  • Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5

    Article  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalco J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microb 71:5544–5550

    Article  CAS  Google Scholar 

  • O’Dell TE, Smith JE, Castellano M, Luoma D (1996) Diversity and conservation of forest fungi. In: Pilz D, Molina R (eds) Managing forest ecosystems to conserve fungus diversity and sustain wild mushrooms harvests. Gen. Tech. Rep. PNW-GTR-371, Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, pp 5–18

  • Odgaard BV (1999) Fossil pollen as a record of past biodiversity. J Biogeogr 26:7–17

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microb 69:2816–1824

    Article  CAS  Google Scholar 

  • Persiani AM, Maggi O, Casado MA, Pineda FD (1998) Diversity and variability in soil fungi from a disturbed tropical rain forest. Mycologia 90:206–221

    Article  Google Scholar 

  • Pfenning L (1997) Soil and rhizosphere microfungi from Brazilian tropical forest ecosystems. In: Hyde KD (ed) Biodiversity of tropical microfungi. University Press, Hong Kong, pp 341–365

    Google Scholar 

  • Prager A, Barthelmes A, Theuerkauf M, Joosten H (2006) Non-pollen palynomorphs from modern Alder carrs and their potential for interpreting microfossil data from peat. Rev Palaeobot Palyno 14:7–31

    Article  Google Scholar 

  • Prentice CI (1985) Pollen representation, source area and basin size: toward a unified theory of pollen analysis. Quaternary Res 23:76–86

    Article  Google Scholar 

  • Primer-E Ltd (2001) Primer version 5.2.2. Roborough Plymouth, UK

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219

    Article  PubMed  CAS  Google Scholar 

  • Rambelli A, Persiani AM, Maggi O, Onofri S, Riess S, Dowgiallo G, Zucconi L (1984) Comparative studies on microfungi in tropical ecosystems. Further mycological studies in South Western Ivory Coast Forest, Report no. 2. Giornale Botanico ltalici 118:210–243

    Google Scholar 

  • Rambelli A, Persiani AM, Maggi O, Lunghini D, Onofri S, Riess S, Dowgiallo G, Puppi G (1983) Comparative studies on microfungi in tropical ecosystems. Mycological Studies in South Western Ivory Coast Forest. Report no. 1, MAB-UNESCO, Rome

  • Rumes B, Eggermont H, Verschuren D (2011) Distribution and faunal richness of Cladocera in western Uganda crater lakes. Hydrobiologia 676:39–56

    Article  CAS  Google Scholar 

  • Russell JM, Verschuren D, Eggermont H (2007) Spatial complexity of “Little Ice Age” climate in East Africa: sedimentary records from two crater lake basins in western Uganda. The Holocene 17:183–193

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc (2008) SAS/STAT 9.2 user’s guide. SAS Institute Inc, Cary

    Google Scholar 

  • Satish N, Sultana S, Nanjundiah V (2007) Diversity of forest fungi in a tropical deciduous forest in Mudumalai, southern India. Curr Sci 93:669–677

    Google Scholar 

  • Sherwood-Pike MA (1988) Freshwater fungi: fossil record and paleoecological potential. In: Gray J (ed) Aspects of freshwater paleoecology and biogeography. Palaeogeogr Palaeoclimatol Palaeoecol 62:271–285

  • Shields JA, Paul EA, Lowe WE, Parkinson D (1973) Turnover of microbial tissue in soil under field conditions. Soil Biol Biochem 5:753–764

    Article  Google Scholar 

  • Sieverding E (1989) Ecology of VAM fungi in tropical agrosystems. Agr Ecosyst Environ 29:369–390

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Sivichai S, Goh TK, Hyde KD, Hywel-Jones NL (1998) The genus Brachydesmiella from submerged wood in the tropics, including a new species and a new combination. Mycoscience 39:239–247

    Article  Google Scholar 

  • Smirnov NN (1964) On the quantity of allochthonous pollen and spores received by the Rybinsk Reservoir. Hydrobiologia 24:421–429

    Article  Google Scholar 

  • Smith D, Waller JM (1992) Culture collections of microorganisms: their importance in tropical plant pathology. Fitopat Brasil 17:1–8

    CAS  Google Scholar 

  • Smol JP, Birks HJB, Last WM (2001a) Tracking environmental change using lake sediments. Volume 3: terrestrial, algal and siliceous indicators. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Smol JP, Birks HJB, Last WM (2001b) Tracking environmental change using lake sediments. Volume 4: zoological indicators. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Sparrow F (1960) Aquatic phycomycetes, 2nd edn. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Subramanian CV (1971) Hyphomycetes. An account of Indian species, except Cercosporae. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Sugita S (1993) A model of pollen source area for an entire lake surface. Quaternary Res 39:239–244

    Article  Google Scholar 

  • Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18:181–195

    Article  PubMed  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielborger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Google Scholar 

  • Tsui KM, Fryar SC, Hodgkiss IJ, Hyde KD, Poonyth AD, Taylor JE (1998) The effect of human disturbance on fungal diversity in the tropics. Fungal Divers 1:19–26

    Google Scholar 

  • van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82:313–329

    Article  Google Scholar 

  • van Geel B, Gelorini V, Lyaruu A, Aptroot A, Rucina S, Marchant R, Sinninghe Damsté JS, Verschuren D (2011) Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev Palaeobot Palyno 164:174–190

    Article  Google Scholar 

  • Verbeken A, Buyck B (2002) Diversity and ecology of tropical ectomycorrhizal fungi in Africa. In: Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson C (eds) Tropical mycology, vol. 1: macromycetes. CABI Publishing, Wallingford, pp 11–24

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Mellilo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Vivian-Smith G (1997) Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J Ecol 85:71–82

    Article  Google Scholar 

  • White F (1983) The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Nat Resour Res 20. UNESCO, Paris

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • Wiens JA (2000) Ecological heterogeneity: an ontogeny of concepts and approaches. In: Hutchings MJ, John EA, Stewart AJA (eds) The ecological consequences of environmental heterogeneity. Blackwell Science, Oxford, pp 9–32

    Google Scholar 

  • Willis KJ, Bhagwat SA (2010) Questions of importance to the conservation of biological diversity: answers from the past. Clim Past 6:759–769

    Article  Google Scholar 

  • Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Will-Wolf S, Hawksworth DL, McCune B, Rosentreter R, Sipman HJM (2004) Lichenized fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi. Elsevier Academic Press, Burlington, pp 173–195

    Chapter  Google Scholar 

  • Winterbottom B, Eilu G (2006) Uganda biodiversity and tropical forest assessment. Final report, United States Agency for International Development, USA, 54pp

  • Wolf FA (1966) Fungus spores in East African lake sediments. B Torrey Bot Club 93:104–113

    Article  Google Scholar 

  • Wolf FA (1967a) Fungus spores in East African lake sediments. IV. B Torrey Bot Club 94:31–34

    Article  Google Scholar 

  • Wolf FA (1967b) Fungus spores in East African lake sediments. VII. B Torrey Bot Club 94:480–486

    Article  Google Scholar 

  • Wong MK, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho W-H, Wong WSW, Yue T-K (1998) Role of fungi in freshwater ecosystems. Biodivers Conserv 7:1187–1206

    Article  Google Scholar 

  • Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38:287–301

    Article  Google Scholar 

  • Wurzbacher CM, Bärlocher F, Grossart H-P (2010) Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149

    Article  Google Scholar 

  • Yeloff D, Charman D, van Geel B, Mauquoy D (2007) Reconstruction of hydrology, vegetation and past climate change in bogs using fungal microfossils. Rev Palaeobot Palyno 146:102–145

    Article  Google Scholar 

  • Zak JC, Willig MR (2004) Fungal biodiversity patterns. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic Press, USA, pp 59–75

    Google Scholar 

Download references

Acknowledgements

This study was funded by the ‘Science for a Sustainable Development’ programme of the Belgian Federal Science Policy (project SD/BD/03 CLANIMAE). The fieldwork was conducted with permission of the Uganda National Council of Science and Technology (NS 162) and the Uganda Wildlife Authority (UWA/TBDP/RES/50). We also benefited from additional sponsoring by the Research Foundation—Flanders (FWO Vlaanderen-Belgium) and the Leopold III Fund for Nature Exploration and Conservation (Belgium) for several field campaigns in 2007 and 2008. We thank Johnson Bwambale, Pierre-Denis Plisnier (Royal Museum for Central Africa, Belgium), Christine Cocquyt (National Botanic Garden of Belgium), Bob Rumes and Julie Lebrun (Gembloux Agro-Bio Tech, Belgium) for field assistance, Martin Konert and Martine Hagen (Vrije Universiteit Amsterdam, The Netherlands) for sample preparation and an anonymous reviewer for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Gelorini.

Appendices

Appendix 1

Percent abundances of fungal-spore morphotypes (bars) recorded at each site, based on the fungal spore sum (204–1045 specimens) counted per sample. The type number of each morphotype is replaced by its percent abundance across all samples, expressed as a proportion of the total fungal spore sum (~9500 specimens).

figure 6figure 6

Appendix 2

Values of AICc (Akaike’s Information Criterion corrected for small sample size) of the multiple lineair regression candidate models, selected to estimate the land-use effects on EF200 for the three datasets: all basins, the freshwater lake basins only and the disturbed lakes only. Models considered to fit the data equally well (ΔAICc ≤ 2), are separated from the other candidate models by space; the most parsimonious models are highlighted in bold.

Fungal spore richness (EF200)

A. All crater basins and freshwater lake basins only

Dist=0,1; no interaction Dist*Hab possible

  • Model 1= Area Dist Hab Area*Hab Area*Dist

  • Model 2= Area Dist Hab Area*Dist

  • Model 3= Area Dist Hab Area*Hab

  • Model 4= Area Dist Hab

  • Model 5= Area Dist Area*Dist

  • Model 6= Area Hab Area*Hab

  • Model 7= Area Dist

  • Model 8= Area Hab

  • Model 9= Dist Hab

  • Model 10= Area

  • Model 11= Hab

  • Model 12= Dist

• All crater basins

Obs

Model

Parms

AICc

ΔAICc

Odds

Weight

Cum Weight

Variation (%)

1

10

3

171.6

0.00000

1.000

0.25942

0.25942

0.1

2

12

3

171.7

0.02040

1.010

0.25679

0.51622

0.03

3

11

3

171.7

0.02829

1.014

0.25578

0.77200

0.002

 

 

 

 

 

 

 

 

 

4

7

4

174.5

2.89113

4.244

0.06112

0.83312

 

5

8

4

174.5

2.90326

4.270

0.06075

0.89388

 

6

9

4

174.5

2.90412

4.272

0.06073

0.95460

 

7

5

5

177.4

5.72751

17.527

0.01480

0.96940

 

8

4

5

177.7

6.10519

21.170

0.01225

0.98166

 

9

6

5

177.8

6.13079

21.443

0.01210

0.99376

 

10

2

6

181.0

9.33230

106.288

0.00244

0.99620

 

11

3

6

181.3

9.70497

128.058

0.00203

0.99822

 

12

1

7

181.6

9.96772

146.037

0.00178

1.00000

 

• Freshwater lake basins

Obs

Model

Parms

AICc

ΔAICc

Odds

Weight

Cum Weight

Variation (%)

1

12

3

151.2

0.00000

1.000

0.36595

0.36595

11

2

11

3

152.1

0.97263

1.626

0.22502

0.59097

7

 

 

 

 

 

 

 

 

 

3

10

3

153.5

2.38856

3.301

0.11085

0.70182

 

4

7

4

153.8

2.63602

3.736

0.09795

0.79977

 

5

9

4

154.1

2.99009

4.460

0.08206

0.88183

 

6

8

4

154.8

3.59524

6.035

0.06064

0.94247

 

7

4

5

157.2

6.02845

20.373

0.01796

0.96043

 

8

5

5

157.2

6.03134

20.403

0.01794

0.97837

 

9

6

5

158.0

6.86169

30.903

0.01184

0.99021

 

10

3

6

160.3

9.10987

95.101

0.00385

0.99406

 

11

1

7

160.6

9.40385

110.159

0.00332

0.99738

 

12

2

6

161.0

9.87716

139.572

0.00262

1.00000

 

B. Disturbed crater basins

Dist replaced by Int; interaction Ant*Hab possible; no 3-way interaction

  • Model 1= Area Ant Hab Area*Hab Ant*Hab Area*Ant

  • Model 2= Area Ant Hab Area*Hab Area*Ant

  • Model 3= Area Ant Hab Area*Ant Ant*Hab

  • Model 4= Area Ant Hab Area*Hab Ant*Hab

  • Model 5= Area Ant Hab Area*Ant

  • Model 6= Area Ant Hab Area*Hab

  • Model 7= Area Ant Hab Ant*Hab

  • Model 8= Area Ant Hab

  • Model 9= Area Ant Area*Ant

  • Model 10= Area Hab Area*Hab

  • Model 11= Ant Hab Ant*Hab

  • Model 12= Area Ant

  • Model 13= Area Hab

  • Model 14= Ant Hab

  • Model 15= Area

  • Model 16= Hab

  • Model 17= Ant

Obs

Model

Parms

AICc

ΔAICc

Odds

Weight

Cum Weight

Variation (%)

1

17

3

110.5

0.0000

1.00

0.60415

0.60415

19

 

 

 

 

 

 

 

 

 

2

14

4

113.2

2.7290

3.91

0.15436

0.75851

 

3

12

4

113.9

3.4580

5.64

0.10721

0.86572

 

4

11

5

116.6

6.1532

21.68

0.02786

0.89358

 

5

9

5

116.9

6.4324

24.93

0.02423

0.91781

 

6

8

5

117.2

6.6677

28.05

0.02154

0.93935

 

7

15

3

117.5

7.0534

34.01

0.01776

0.95712

 

8

16

3

117.9

7.3730

39.90

0.01514

0.97226

 

9

6

6

118.4

7.9141

52.30

0.01155

0.98381

 

10

10

5

119.7

9.1877

98.87

0.00611

0.98992

 

11

13

4

121.0

10.5361

194.04

0.00311

0.99303

 

12

5

6

121.3

10.8233

224.00

0.00270

0.99573

 

13

7

6

121.5

11.0414

249.81

0.00242

0.99815

 

14

4

7

123.2

12.6756

565.54

0.00107

0.99922

 

15

2

7

124.4

13.8728

1029.04

0.00059

0.99980

 

16

3

7

126.8

16.3260

3508.74

0.00017

0.99998

 

17

1

8

130.7

20.1927

24253.93

0.00002

1.00000

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelorini, V., Verbeken, A., Lens, L. et al. Effects of land use on the fungal spore richness in small crater-lake basins of western Uganda. Fungal Diversity 55, 125–142 (2012). https://doi.org/10.1007/s13225-012-0155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0155-z

Keywords

Navigation