Skip to main content

Advertisement

Log in

Pollen and spores: Microscopic keys to understanding the earth's biodiversity

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The most distinctive feature of planet Earth is that, unlike any other world in this solar system, it is rich in biodiversity. Our own species, which evolved as part of the biosphere that sustains us, has the intelligence and curiosity to explore the world around us and to understand its complexity. Given the environmental challenges that lie ahead we have much to learn by exploring all aspects of biodiversity. One astonishingly informative field of investigation is palynology, the study of the pollen grains and spores of plants. These microscopic, self-contained biological units are surrounded by chemically resistant cell walls with distinctive structures and symmetry. They can provide insights into such fundamental questions as how and when plants first colonised the land or how the earth's vegetation has developed through geological time and on finer time scales. They provide phylogenetic evidence important in plant systematics and model systems for understanding plant development at the cellular level. This short voyage through the microscopic world of pollen grains and spores is a personal account of the interest and importance of these microscopic keys to understanding the earth's biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. An Z. Feng L. Tang (2004) ArticleTitleEnvironmental change and cultural response between 8000 and 4000 cal. Yr BP in the western Loess Plateau, northwest China J. Quat. Sci. 19 529–535 Occurrence Handle10.1002/jqs.849

    Article  Google Scholar 

  • Andersen S. T. (1973) The differential pollen productivity of trees and its significance for the interpretation of a pollen diagram from a forested region. In: Birks H. J. B., West R. G. (eds.) Quaternary Plant Ecology. The 14th Symposium of the British Ecological Society, University of Cambridge, 28–20 March 1972. Blackwell Scientific Publishers, Oxford, pp. 109–105.

  • Anonymous (1994) Systematics Agenda 2000. American Society of Plant Taxonomists, Society of Systematic Biologists, Willi Hennig Society and Association of Systematics Collections, NewYork.

  • R. M. Bateman P. R. Crane W. A. DiMichelle P. R. Kenrick N. P. Rowe T. Speck W. E. Stein (1998) ArticleTitleEarly evolution of land plants: phylogeny, physiology and ecology of the primary terrestrial radiation Annual Rev. Ecol. Syst. 29 263–292 Occurrence Handle10.1146/annurev.ecolsys.29.1.263

    Article  Google Scholar 

  • K.-E. Behre (1986) Anthropogenic indicators in pollen diagrams A. A. Balkema Rotterdam

    Google Scholar 

  • H. J. B. Birks H. H. Birks (1980) Quaternary Palaeoecology Edward Arnold London

    Google Scholar 

  • S. Blackmore (1996) ArticleTitleKnowing the Earth’s biodiversity: challenges for the infrastructure of systematic biology Science 274 63–64 Occurrence Handle10.1126/science.274.5284.63 Occurrence Handle1:CAS:528:DyaK28XmtVynsrw%3D

    Article  CAS  Google Scholar 

  • Blackmore S. (1990) Sporoderm homologies and morphogenesis in land plants, with a discussion of Echinops sphaerocephala (Compositae). Pl. Syst. Evol. (Suppl. 5): 112.

  • S. Blackmore (2000) The palynological compass: the contribution of palynology to systematics B. Nordenstam G. El Ghazaly M. Kassas (Eds) Plant systematics for the 21st century Portland Press London 161–177

    Google Scholar 

  • S. Blackmore (2001) ArticleTitleAll the world’s a garden Horticulturist 10 13–16

    Google Scholar 

  • S. Blackmore (2002) ArticleTitleBiodiversity update: progress in taxonomy Science 298 365 Occurrence Handle12376687 Occurrence Handle10.1126/science.1075026 Occurrence Handle1:CAS:528:DC%2BD38XnvVOjsrY%3D

    Article  PubMed  CAS  Google Scholar 

  • S. Blackmore S. H. Barnes (1987) ArticleTitleEmbryophyte spore walls: origin, development and homologies Cladistics 3 185–195

    Google Scholar 

  • Blackmore S., Barnes S. H. (1991) (eds.) Pollen and spores: patterns of diversification. Systematics Association Special Volume Series, Oxford University Press.

  • S. Blackmore S. H. Barnes (1995) ArticleTitleGarside's rule and the microspore tetrads of Grevillea rosmarinifolia A. Cunn. and Dryandra polycephala Benth. (Proteaceae) Rev. Palaeobot. Palynol. 85 111–121 Occurrence Handle10.1016/0034-6667(94)00085-X

    Article  Google Scholar 

  • S. Blackmore P. R. Crane (1988) Systematic implications of pollen and spore ontogeny C. J. Humphries (Eds) Ontogeny and systematics Columbia University Press New York 83–115

    Google Scholar 

  • S. Blackmore I. K. Ferguson (Eds) (1986) Pollen and spores: form and function Academic Press London

    Google Scholar 

  • Blackmore S., Paterson D. S. (2005) Gardening the Earth – the contribution of botanic gardens to plant conservation and habitat restoration. In: Leadley E., Jury S. L. (eds.) Taxonomy and plant conservation. Cambridge University Press, pp. 266–273.

  • Blackmore S., Thiele K. (1988) Successive cytokinesis during microsporogenesis in the Proteaceae. Pollination '88: 47–49, University of Melbourne.

    Google Scholar 

  • J. Brooks P. R. Grant M. Muir P. Gijzel ParticleVan G. Shaw (1971) Sporopollenin Academic Press London, New York

    Google Scholar 

  • R. Brown (1811) ArticleTitleOn the Proteaceae of Jussieu Trans. Linn. Soc. Lond. 18 36–64

    Google Scholar 

  • W. G. Chaloner (1970) ArticleTitleThe rise of the first land plants Biol. Rev. 45 353–377

    Google Scholar 

  • W. G. Chaloner (1976) The evolution of adaptive features in fossil exines I. K. Ferguson J. Muller (Eds) The evolutionary significance of the exine Academic Press London 1–14

    Google Scholar 

  • J. Diamond (2005) Collapse: how societies choose to fail or survive Penguin London

    Google Scholar 

  • J. A. Doyle C. L. Hotton (1991) Diversification of early angiosperm pollen in a cladistic context S. Blackmore S. H. Barnes (Eds) Pollen and spores: patterns of diversification Clarendon Press Oxford 69–95

    Google Scholar 

  • D. Edwards (1996) ArticleTitleNew insights into early land ecosystems: a glimpse of a Lilliputian world Rev. Palaeobot. Palynol. 90 159–174 Occurrence Handle10.1016/0034-6667(95)00081-X

    Article  Google Scholar 

  • D. Edwards J. G. Duckett J. B. Richardson (2002) ArticleTitleHepatic characters in the earliest land plants Nature 374 635–636 Occurrence Handle10.1038/374635a0

    Article  Google Scholar 

  • El Ghazaly G. A. (1991) Pollen flora of Qatar. University of Qatar.

  • G. Erdtman (1943) An introduction to pollen analysis Waltham Mass

    Google Scholar 

  • G. Erdtman (1952) Pollen morphology and plant taxonomy. Angiosperms Almqvist and Wiksell Stockholm

    Google Scholar 

  • G. Erdtman (1957) Pollen and spore morphology. Plant taxonomy. Gymnospermae, pteridophyta, bryophyta Almquist and Wiksell Stockholm

    Google Scholar 

  • G. Erdtman (1960) ArticleTitleThe acetolysis method, a revised description Svensk Bot. Tidskr. 54 561–564

    Google Scholar 

  • G. Erdtman (1969) Handbook of palynology - an introduction to the study of pollen grains and spores Munksgaard Copenhagen

    Google Scholar 

  • G. Erdtman B. Berglund J. Praglowski (1961) An introduction to a Scandinavian pollen flora Almqvist and Wiksell Stockholm

    Google Scholar 

  • Faegri K., Iversen J. (1950) Textbook of modern pollen analysis. Munksgaard. Copenhagen.

  • I. K. Ferguson (2000) Pollen-morphological data in systematics and evolution: past, present and future B. Nordenstam G. El Ghazaly M. Kassas (Eds) Plant systematics for the 21st century Portland Press London 179–192

    Google Scholar 

  • I. K. Ferguson J. Muller (Eds) (1976) The evolutionary significance of the exine Academic Press London New York

    Google Scholar 

  • J. R. Flenley S. M. King (1984) ArticleTitleLate Quaternary pollen records from Easter Island Nature 307 47–50 Occurrence Handle10.1038/307047a0

    Article  Google Scholar 

  • Gabarayeva N. I., Hemsley A. R. (2006) Merging Concepts: the role of self-assembly in the development of pollen wall structure. Rev. Palaeob. Palynol. (in press).

  • H. Goodwin (1975) The history of the British flora EditionNumber2 Cambridge University Press Cambridge

    Google Scholar 

  • N. Grew (1682) The anatomy of plants Rawlins London

    Google Scholar 

  • M. M. Harley C. M. Morton S. Blackmore (Eds) (2000) Pollen and spores: morphology and biology Royal Botanic Gardens Kew

    Google Scholar 

  • A. R. Hemsley M. E. Collinson B. Vicent P. C. Griffiths P. D. Jenkins (2000) Self-assembly of colloidal units in exine development M. M. Harley C. M. Morton S. Blackmore (Eds) Pollen and spores: morphology and biology Royal Botanic Gardens Kew 31–44

    Google Scholar 

  • Hemsley A. R., Gabarayeva N. I. (2006) Exine development: the importance of looking through a colloid chemistry ``window''. Pl. Syst. Evol. (this issue).

  • A. R. Hemsley A. C. Scott P. J. Barrie W. G. Chaloner (1996) ArticleTitleStudies of fossil and modern spore wall biomolecules using 13C solid state NMR Ann. Bot. 78 83–94 Occurrence Handle10.1006/anbo.1996.0099

    Article  Google Scholar 

  • Hesse M., Ehrendorfer F. (1990) Morphology, development and systematic relevance of pollen and spores. Pl. Syst. Evol. Supplement 5.

  • V. H. Heywood R. T. Watson (Eds) (1995) Global biodiversity assessment Cambridge University Press Cambridge

    Google Scholar 

  • T. C. Huang (1972) The pollen flora of Taiwan National Taiwan University Taipei

    Google Scholar 

  • B. Huntley (1993) ArticleTitleThe use of climatic response surfaces to reconstruct palaeoclimate from Quaternary pollen and plant macrofossil data Phil. Trans. Roy. Soc. London, B. 341 215–223 Occurrence Handle10.1098/rstb.1993.0106

    Article  Google Scholar 

  • Huntley B., Birks H. J. B. (1983) An atlas of past and present pollen maps for Europe. 0 – 13,000 years ago. Cambridge University Press.

  • H. A. Hyde D. A. Adams (1944) ArticleTitleThe right word Pollen Science Circular 8 6

    Google Scholar 

  • J. Iversen (1944) ArticleTitle Viscum, Hedera and Ilex as climate indicators. A contribution to the study of the Post-Glacial temperature and climate Geol. fören. Stockh. förh. 66 463–483

    Google Scholar 

  • R. Kesseler M. Harley (2004) Pollen. The hidden sexuality of flowers Papadakis Publisher London

    Google Scholar 

  • G. O. W. Kremp (1968) Morphologic encyclopedia of palynology EditionNumber2 Univ. Arizona Press Tucson

    Google Scholar 

  • C. C. Labandeira (1998) ArticleTitleEarly history of arthropod and vascular plant associations Ann. Rev. Earth Planet. Sci. 26 329–377 Occurrence Handle10.1146/annurev.earth.26.1.329 Occurrence Handle1:CAS:528:DyaK1cXjsVSmtb8%3D

    Article  CAS  Google Scholar 

  • R. M. May (1988) ArticleTitleHow many species are there on Earth Science 241 1441–1449 Occurrence Handle10.1126/science.241.4872.1441 Occurrence Handle17790039

    Article  PubMed  Google Scholar 

  • R. T. Molina A. M. Rodriguez I. S. Palacios F. G. Lopez (1996) ArticleTitlePollen production in anemophilous trees Grana 35 38–46 Occurrence Handle10.1080/00173139609430499

    Article  Google Scholar 

  • P. D. Moore J. A. Webb M. Collinson (1991) Pollen analysis Blackwell London

    Google Scholar 

  • V. Mosbrugger T. Utescher (1997) ArticleTitleThe coexistence approach – a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using fossil plants Palaeogeography, Palaeoclimatology, Palaeoecology 134 61–86 Occurrence Handle10.1016/S0031-0182(96)00154-X

    Article  Google Scholar 

  • R. M. Newnham (1999) ArticleTitleMonitoring biogeographical responses to climate change: the potential role of aeropalynology Aerobiologia 15 87–94 Occurrence Handle10.1023/A:1007595615115

    Article  Google Scholar 

  • B. V. Odgaard (1999) ArticleTitleFossil pollen as a record of past biodiversity J. Biogeogr. 26 7–17 Occurrence Handle10.1046/j.1365-2699.1999.00280.x

    Article  Google Scholar 

  • A. E. Pozhidaev (1998) ArticleTitleHypothetical way of pollen aperture patterning. I. Formation of 3-colpate patterns and endoaperture geometry Rev. Palaeobot. Palynol. 104 67–83 Occurrence Handle10.1016/S0034-6667(98)00045-1

    Article  Google Scholar 

  • C. Prentice J. Guiot B. Huntley D. Jolly R. Cheddadi (1996) ArticleTitleReconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka Climate Dynamics 12 185–193 Occurrence Handle10.1007/s003820050102

    Article  Google Scholar 

  • W. Punt G. C. S. Clarke (1974) The Northwest European pollen flora Elsevier Amsterdam

    Google Scholar 

  • Punt W., Blackmore S., Nilsson S., Le Thomas A. (1994) Glossary of pollen and spore terminology. LPP Contribution Series 1, LPP Foundation, Utrecht.

  • M. Rittscher R. Wiermann (1988) ArticleTitleStudies on sporopollenin biosynthesis in Tulipa anthers. II. Incorporation of precursors and degradation of the radiolabelled polymer Sexual Plant Reproduction 1 132–139 Occurrence Handle10.1007/BF00193743

    Article  Google Scholar 

  • N. E. Stork (1997) Measuring global biodiversity and its decline M. Reaka-Kudla D. E. Wilson E. O. Wilson (Eds) Biodiversity II Joseph Henry Press Washington, DC 41–68

    Google Scholar 

  • M. Campo ParticleVan (1976) Patterns of pollen morphological variation within taxa I. K. Ferguson J. Muller (Eds) The evolutionary significance of the exine Academic Press London 125–135

    Google Scholar 

  • G. A. Uffelen ParticleVan (1991) The control of spore wall formation S. Blackmore S. H. Barnes (Eds) Pollen and spores: patterns of diversification Clarendon Press Oxford 89–102

    Google Scholar 

  • L. Post ParticleVon (1917) ArticleTitleOm skogstradpollen i sydsvenska tormfmosselagerfolker Geol. fören. Stockh. förh. 38 384–394

    Google Scholar 

  • J. W. Walker J. A. Doyle (1975) ArticleTitleThe bases of angiosperm phylogeny: palynology Ann. Missouri. Bot. Gard. 62 644–723 Occurrence Handle10.2307/2395271

    Article  Google Scholar 

  • F. Wang N. Chien Y. Zhang H. Yang (1995) Pollen flora of China Science Press Beijing

    Google Scholar 

  • C. H. Wellman J. Gray (2000) ArticleTitleThe microfossil record of early land plants Phil. Trans. Roy. Soc. 355 717–732 Occurrence Handle10.1098/rstb.2000.0612 Occurrence Handle1:STN:280:DC%2BD3M%2FjtFyntQ%3D%3D

    Article  CAS  Google Scholar 

  • C. H. Wellman P. L. Osterloff U. Mohiuddin (2003) ArticleTitleFragments of the earliest land plants Nature 425 282–285 Occurrence Handle13679913 Occurrence Handle10.1038/nature01884 Occurrence Handle1:CAS:528:DC%2BD3sXntlWnsrY%3D

    Article  PubMed  CAS  Google Scholar 

  • E. O. Wilson (1992) The diversity of life Penguin London

    Google Scholar 

  • E. O. Wilson (2002) The future of life Alfred A. Knopf New York

    Google Scholar 

  • R. P. Wodehouse (1935) Pollen grains. Their structure, identification and significance in science and medicine EditionNumber1 McGraw-Hill London

    Google Scholar 

  • G. Yu C. Prentice S. P. Harrison X. Sun (1998) ArticleTitlePollen-based biome reconstructions for China at 0 and 6000 years J. Biogeogr. 25 1055–1069 Occurrence Handle10.1046/j.1365-2699.1998.00237.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Blackmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackmore, S. Pollen and spores: Microscopic keys to understanding the earth's biodiversity. Plant Syst. Evol. 263, 3–12 (2007). https://doi.org/10.1007/s00606-006-0464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-006-0464-3

Keywords

Navigation