Skip to main content
Log in

The prominence of and biases in biodiversity and ecosystem functioning research

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The sub-discipline of biodiversity and ecosystem functioning (BEF) has emerged as a central topic in contemporary ecological research. However, to date no study has evaluated the prominence and publication biases in BEF research. Herein we report the results of a careful quantitative assessment of BEF research published in five core general ecology journals from 1990 to 2007 to determine the position of BEF research within ecology, identify patterns of research effort within BEF research, and discuss their probable proximal and historical causes. The relative importance of BEF publications increased exponentially during the period analyzed and was significantly greater than the average growth of ecological literature, affirming the prominence of BEF as a current paradigm in ecology. However, BEF research exhibited a strong bias toward experimental studies on terrestrial plant communities, with significantly lower effort devoted to the functional aspects of biodiversity in aquatic systems, multiple trophic level systems, and animal or microbial communities. Such trends may be explained by a combination of methodological adequacy and historic epistemological differences in ecological thinking. We suggest that BEF researchers should direct more effort toward the study of aquatic systems and animal communities, emphasize long-term and trophically complex experiments, such as those with multi-trophic microbial communities, employ larger-scale field observational studies and increase the use of integrative and theoretical studies. Many technical and analytical methodologies that are already employed in ecological research, such as stable isotopes, paleobiology, remote sensing, and model selection criteria, can facilitate these aims. Overcoming the above-mentioned shortcomings of current BEF research will greatly improve our ability to predict how biodiversity loss will affect ecosystem processes and services in natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Barot S, Blouin M, Fontaine S et al (2007) A tale of four stories: soil ecology, theory, evolution and the publication system. Plos One 11:e1248

    Article  Google Scholar 

  • Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10:191–199

    Article  Google Scholar 

  • Benton TG, Solan M, Travis JMJ et al (2007) Microcosm experiments can inform global ecological problems. Trends Ecol Evol 22:516–521

    Article  PubMed  Google Scholar 

  • Bohannan BJM, Hughes J (2003) New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol 6:282–287

    Article  PubMed  CAS  Google Scholar 

  • Bracken MES, Stachowicz JJ (2006) Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium. Ecology 87:2397–2403

    Article  PubMed  Google Scholar 

  • Budilova EV, Drogalina JA, Teriokhin AT (1997) Principal trends in modern ecology and its mathematical tools: an analysis of publications. Scientometrics 39:147–157

    Article  Google Scholar 

  • Caliman A, Leal JJF, Esteves FA, Carneiro LS, Bozelli RL, Farjalla VF (2007) Functional bioturbator diversity enhances benthic-pelagic processes and properties in experimental microcosms. J North Am Benthol Soc 26:450–459

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  PubMed  CAS  Google Scholar 

  • Cardinale BJ, Wrigh JP, Cadotte MW et al (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104:18123–18128

    Article  PubMed  Google Scholar 

  • Carpenter SR, Cole JJ, Hodgson JR et al (2001) Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163–186

    Google Scholar 

  • Chambers JQ, Asner GP, Morton DC et al (2007) Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends Ecol Evol 22:414–423

    Article  PubMed  Google Scholar 

  • Chapin FS, Walker BH, Hobbs RJ et al (1997) Biotic control over the functioning of ecosystems. Science 277:500–504

    Article  CAS  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  PubMed  CAS  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Fresh Resear 52:101–110

    Article  CAS  Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection or the preservation of favored races in the struggle for life. The modern library, New York

    Google Scholar 

  • De Meester L, Declerck S, Stoks R et al (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat Conserv 15:715–725

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219

    Article  Google Scholar 

  • Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ. doi:10.1890/070195

  • Duffy JE, Cardinale BJ, France KE et al (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    Article  PubMed  Google Scholar 

  • Emmerson M, Huxham M (2002) How can marine ecology contribute to the biodiversity-ecosystems functioning debate? In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, New York, pp 139–146

    Google Scholar 

  • Emmerson MC, Solan M, Emes C et al (2001) Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature 411:73–77

    Article  PubMed  CAS  Google Scholar 

  • Forbes S (1887) The lake as a microcosm. Bull Scient Assoc (Peoria, IL) 1887:77–87

    Google Scholar 

  • France KE, Duffy JE (2006) Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441:1139–1143

    Article  PubMed  CAS  Google Scholar 

  • Gessner MO, Inchausti P, Persson L et al (2004) Biodiversity effects on ecosystem functioning: insights from aquatic systems. Oikos 104:419–422

    Article  Google Scholar 

  • Giller PS, Hillebrand H, Berninger UG et al (2004) Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104:423–436

    Article  Google Scholar 

  • Graham MH, Dayton PK (2002) On the evolution of ecological ideas: paradigms and scientific progress. Ecology 83:1481–1489

    Google Scholar 

  • Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  Google Scholar 

  • Huston MA, McBride AC (2002) Evaluating the relative strengths of biotic versus abiotic controls on ecosystem processes. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, New York, pp 47–60

    Google Scholar 

  • Ives AR, Cardinale BJ (2004) Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429:174–177

    Article  PubMed  CAS  Google Scholar 

  • Jackson JBC, Johnson KG (2001) Paleoecology—measuring past biodiversity. Science 293:2401

    Article  PubMed  CAS  Google Scholar 

  • Jessup CM, Kassen R, Forde SE et al (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Article  PubMed  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Kahmen A, Renker C, Unsicker SB et al (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–1255

    Article  PubMed  Google Scholar 

  • Kiessling W (2005) Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 433:410–413

    Article  PubMed  CAS  Google Scholar 

  • Kumari L (2006) Trends in synthetic organic chemistry research. Cross-country comparison of Activity Index. Scientometrics 67:467–476

    CAS  Google Scholar 

  • Lawton JH (1996) Patterns in ecology. Oikos 75:145–147

    Article  Google Scholar 

  • Layman CA, Post DM (2008) Can stable isotope ratios provide for community-wide measures of trophic structure? Reply. Ecology 89:2358–2359

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM et al (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in Hubbard Brook watershed-ecosystem. Ecol Monogr 40:23

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P et al (2001) Ecology—biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  • Loreau M, Mouquet N, Holt RD (2003) Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol Lett 6:673–679

    Article  Google Scholar 

  • McIntyre PB, Jones LE, Flecker AS et al (2007) Fish extinctions alter nutrient recycling in tropical freshwaters. Proc Natl Acad Sci USA 104:4461–4466

    Article  PubMed  CAS  Google Scholar 

  • Moustakas A, Karakassis I (2005) How diverse is aquatic biodiversity research? Aquat Ecol 39:367–375

    Article  Google Scholar 

  • Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–1552

    Article  Google Scholar 

  • Naeem S (2006) Expanding scales in biodiversity-based research: challenges and solutions for marine systems. Mar Ecol Prog Ser 311:273–283

    Article  Google Scholar 

  • Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579

    Article  Google Scholar 

  • Naeem S, Loreau M, Inchausti P (2002) Biodiversity and ecosystem functioning: the emergence of a synthetic ecological framework. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, New York, pp 3–11

    Google Scholar 

  • Nobis M, Wohlgemuth T (2004) Trend words in ecological core journals over the last 25 years (1978–2002). Oikos 106:411–421

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2007) Dendrograms and measuring functional diversity. Oikos 116:1422–1426

    Article  Google Scholar 

  • Petchey OL, Downing AL, Mittelbach GG et al (2004) Species loss and the structure and functioning of multitrophic aquatic systems. Oikos 104:467–478

    Article  Google Scholar 

  • Purvis A, Agapow PM, Gittleman JL et al (2000) Nonrandom extinction and the loss of evolutionary history. Science 288:328–330

    Article  PubMed  CAS  Google Scholar 

  • Raffaelli D (2006) Biodiversity and ecosystem functioning: issues of scale and trophic complexity. Mar Ecol Prog Ser 311:285–294

    Article  Google Scholar 

  • Raffaelli D, Van der Putten WH, Persson L (2002) Multi-trophic dynamics and ecosystem processes. In: Loreau M, Naeem S, Inchausti P et al (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, New York, pp 147–154

    Google Scholar 

  • Raffaelli D, Emmerson M, Solan M et al (2003) Biodiversity and ecosystem processes in shallow coastal waters: an experimental approach. J Sea Res 49:133–141

    Article  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M et al (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433

    Article  PubMed  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ et al (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Schmid B, Hector A (2004) The value of biodiversity experiments. Basic Appl Ecol 5:535–542

    Article  Google Scholar 

  • Schulze ED, Mooney HA (1994) Biodiversity and ecosystem function. Springer-Verlag, Berlin

    Google Scholar 

  • Solan M, Cardinale BJ, Downing AL et al (2004) Extinction and ecosystem function in the marine benthos. Science 306:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294

    Article  Google Scholar 

  • Srivastava DS, Kolasa J, Bengtsson J et al (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384

    Article  PubMed  Google Scholar 

  • Srivastava DS, Cardinale BJ, Downing JE et al (2009) Diversity has stronger top-down than bottom-effect effects on decomposition. Ecology 90:1073–1083

    Article  PubMed  Google Scholar 

  • Symstad AJ, Chapin FS, Wall DH et al (2003) Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience 53:89–98

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wardle DA (1999) Is “sampling effect” a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos 87:403–407

    Article  Google Scholar 

  • Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810

    Article  PubMed  CAS  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L et al (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    Article  PubMed  CAS  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Zavaleta ES, Hulvey KB (2004) Realistic species losses disproportionately reduce grassland resistance to biological invaders. Science 306:1175–1177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael J. Vanni, Luciana S. Carneiro, Marcus V. Vieira, Ricardo I. Rios and two anonymous referees for constructive comments that improved the final version of this manuscript. This work was supported by research productivity grants and scholarships provided by the Brazilian Council of Research (CNPq) and “Coordenadoria de Pessoal de Nivel Superior” (CAPES – Brazilian Ministry of Education), respectively. CAPES also provided open access to journals used in this bibliometric survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Caliman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caliman, A., Pires, A.F., Esteves, F.A. et al. The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers Conserv 19, 651–664 (2010). https://doi.org/10.1007/s10531-009-9725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9725-0

Keywords

Navigation