The First Data Science Challenge at BTW 2017

  • Pascal Hirmer
  • Tim Waizenegger
  • Ghareeb Falazi
  • Majd Abdo
  • Yuliya Volga
  • Alexander Askinadze
  • Matthias Liebeck
  • Stefan Conrad
  • Tobias Hildebrandt
  • Conrad Indiono
  • Stefanie Rinderle-Ma
  • Martin Grimmer
  • Matthias Kricke
  • Eric Peukert
Schwerpunktbeitrag

Abstract

The 17th Conference on Database Systems for Business, Technology, and Web (BTW2017) of the German Informatics Society (GI) took place in March 2017 at the University of Stuttgart in Germany. A Data Science Challenge was organized for the first time at a BTW conference by the University of Stuttgart and Sponsor IBM. We challenged the participants to solve a data analysis task within one month and present their results at the BTW. In this article, we give an overview of the organizational process surrounding the Challenge, and introduce the task that the participants had to solve. In the subsequent sections, the final four competitor groups describe their approaches and results.

Keywords

BTW 2017 Challenge Data science Analytics New York City Citibike Car accidents 

References

  1. 1.
    Australian Bureau of Statistics (2017) Time series analysis: the basicsGoogle Scholar
  2. 2.
    Chaudhuri S, Dayal U (1997) An overview of data warehousing and olap technology. ACM Sigmod Rec 26(1):65–74CrossRefGoogle Scholar
  3. 3.
    Cortes C, Vapnik V (1995) Support-Vector Networks. Mach Learn 20(3):273–297MATHGoogle Scholar
  4. 4.
    Ho T (1995) Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp 278–282Google Scholar
  5. 5.
    Keim D, Andrienko G, Fekete JD, Görg C, Kohlhammer J, Melançon G (2008) Visual analytics: definition, process, and challenges. In: Information visualization. Springer, Berlin Heidelberg, pp 154–175CrossRefGoogle Scholar
  6. 6.
    Kisilevich S, Mansmann F, Nanni M, Rinzivillo S (2010) Spatio-temporal clustering. Springer, Boston, pp 855–874Google Scholar
  7. 7.
    Maciejewski R, Rudolph S, Hafen R, Abusalah A, Yakout M, Ouzzani M, Cleveland WS, Grannis S, Ebert DS (2010) A visual analytics approach to understanding spatiotemporal hotspots. IEEE Trans Vis Comput Graph 16(2):205–220CrossRefGoogle Scholar
  8. 8.
    NYC Taxi & Limousine Commision (2017) Tlc trip record dataGoogle Scholar
  9. 9.
    Slocum TA, McMaster RB, Kessler FC, Howard HH (2005) Thematic cartography and geographic visualization. geographic information science. Pearson, Prentice HallGoogle Scholar
  10. 10.
    Thomas J, Kielman J (2009) Challenges for visual analytics. Inf Vis 8(4):309–314CrossRefGoogle Scholar
  11. 11.
    Van Brummelen G (2013) Heavenly mathematics: the forgotten art of spherical trigonometry. Princeton University Press, PrincetonMATHGoogle Scholar
  12. 12.
    World Health Organization (2017) Top 10 causes of deathGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Pascal Hirmer
    • 1
  • Tim Waizenegger
    • 1
  • Ghareeb Falazi
    • 1
  • Majd Abdo
    • 1
  • Yuliya Volga
    • 1
  • Alexander Askinadze
    • 2
  • Matthias Liebeck
    • 2
  • Stefan Conrad
    • 2
  • Tobias Hildebrandt
    • 3
  • Conrad Indiono
    • 3
  • Stefanie Rinderle-Ma
    • 3
  • Martin Grimmer
    • 4
  • Matthias Kricke
    • 4
  • Eric Peukert
    • 4
  1. 1.IPVSUniversity of StuttgartStuttgartGermany
  2. 2.Datenbanken und InformationssystemeHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  3. 3.Research Group Workflow Systems and TechnologyUniversität WienWienAustria
  4. 4.Big Data Competence Center (ScaDS Dresden/Leipzig)Universität LeipzigLeipzigGermany

Personalised recommendations