Skip to main content

Advertisement

Log in

Agronomic and environmental aspects of diazotrophic bacteria in rice fields

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

This article provides an overview of the free-living and plant-associated nitrogen (N)-fixing bacterial communities in wet rice fields, with a focus on describing the elements affecting community assemblages in this waterlogged soil–plant system. Nitrogen is a crucial nutrient for rice yield and growth. Characteristics of the rice paddy ecosystem promote N-fertilizer losses, resulting in negative impacts on the environment. Public concerns on sustainable rice crop production and food security have accentuated interest in exploring biological supplementary nitrogen sources. Biological N-fixation is a significant source of the nitrogen in agroecosystems. The nitrogen requirement of rice crops can be partly remedied by managing and promoting the activities of N-fixing microorganisms. These changes are leading towards a cleaner approach that maintains sustainability while simultaneously improving crop production targets. The use of N-fixing microorganisms as biofertilizers and the factors driving the success of this technology in wet rice paddies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Domínguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281

    Article  CAS  Google Scholar 

  • Akoijam C, Singh AK, Rai AN (2012) Characterization of free-living cyanobacterial strains and their competence to colonize rice roots. Biol Fert Soils 48:679–687

    Article  Google Scholar 

  • Al-Taweil HI, Osman MB, Hamid AA, Yusoff WMW (2009) Development of microbial inoculants and the impact of soil application on rice seedlings growth. Am J Agric Biol Sci 4:79–82

    Article  Google Scholar 

  • Araújo AEDS, Rossetto CAV, Baldani VLD, Baldani JI (2010) Rice seed germination and vigour as affected by the inoculation with diazotrophic bacteria. Ciênc Agrotec 34:932–939

    Article  Google Scholar 

  • Araújo AEDS, Baldani VLD, Galisa PDS, Pereira JA, Baldani JI (2013) Response of traditional upland rice varieties to inoculation with selected diazotrophic bacteria isolated from rice cropped at the Northeast region of Brazil. Appl Soil Ecol 64:49–55

    Article  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    Article  CAS  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oriza sativa L.) cultivars. Plant Biol 3:139–148

    Article  CAS  Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oriza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Barraquio WL, Guzman MRD, Barrion M, Watanabe I (1982) Population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland and dryland rice. Appl Environ Microbiol 43:124–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, Kuske CR (2014) Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microb 80:3103–3112

    Article  CAS  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee RB, Jourand P, Chaintreuil C, Dreyfus B, Singh A, Mukhopadhyay NS (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 48:173–182

    Article  CAS  Google Scholar 

  • Bhuvaneshwari K, Singh R, Singh PK (2012) Organic rice production using organic manures and bio-inoculants in an alkaline soil. J Rec Adv Agric 1:128–134

    Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agronom J 92:880–886

    Article  Google Scholar 

  • Biswas M, Parveen S, Shimozawa H, Nakagoshi N (2005) Effects of Azolla species on weed emergence in a rice paddy ecosystem. Weed Biol Manag 5:176–183

    Article  Google Scholar 

  • Bocchi S, Malgioglio A (2010) Azolla-Anabaena as a biofertilizer for rice paddy fields in the Po Valley, a temperate rice area in northern Italy. Int J Agron 2010:1–5

    Article  CAS  Google Scholar 

  • Cai Z, Shan Y, Xu H (2007) Effects of nitrogen fertilization on CH4 emission from rice fields. Soil Sci Plant Nutr 53:353–361

    Article  CAS  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  CAS  Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biotechnol 25:1919–1928

    Article  Google Scholar 

  • Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87:65–77

    Article  CAS  PubMed  Google Scholar 

  • Chen LS, Wang K (2014) Diagnosing of rice nitrogen stress based on static scanning technology and image information extraction. J Soil Sci Plant Nutr 14:382–393

    Google Scholar 

  • Chen W-C, Yen J-H, Chang C-S, Wang Y-S (2009) Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil. Ecotox Environ Safe 72:120–127

    Article  CAS  Google Scholar 

  • Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microb 71:7271–7278

    Article  CAS  Google Scholar 

  • Chithrashree AC, Udayashankar S, Chandra N, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59:114–122

    Article  CAS  Google Scholar 

  • Chung EJ, Jo EJ, Yoon HS, Song GC, Jeon CO, Chung YR (2011) Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Micr 61:2389–2394

    Article  Google Scholar 

  • Cong PT, Dung TD, Hien TM, Hien NT, Choudhury ATMA, Kecskés ML, Kennedy IR (2009) Inoculant plant growth-promoting microorganisms enhance utilisation of urea-N and grain yield of paddy rice in southern Vietnam. Eur J Soil Biol 45:52–61

    Article  CAS  Google Scholar 

  • Costa PBD, Beneduzi A, Souza RD, Schoenfeld R, Vargas LK, Passaglia LMP (2013) The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing. Plant Soil 368:267–280

    Article  CAS  Google Scholar 

  • Cruz AF, Hamel C, Hanson K, Selles F, Zentner RP (2009) Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem. Plant Soil 315:173–184

    Article  CAS  Google Scholar 

  • Dalton DA, Kramer S (2007) Nitrogen-fixing bacteria in non-legumes. In: Gnanamanickam SS (ed) Plant-associated bacteria, 1st edn. Springer, Dordrecht, pp 105–130

    Google Scholar 

  • Das AC, Mukherjee D (2000) Soil application of insecticides influences microorganisms and plant nutrients. Appl Soil Ecol 14:55–62

    Article  Google Scholar 

  • Das AC, Saha D (2007) Effect of diazotrophs on the mineralization of organic nitrogen in the rhizosphere soils of rice (Oryza sativa). J Crop Weed 3:47–51

    Google Scholar 

  • Dazzo FB, Yanni YG, Rizk R, de Bruijn FJ, Rademaker J, Squartini A, Corich V, Mateos P, Martinez-Molina E, Velazquez E, Biswas JC, Hernandez RJ, Ladha JK, Hill J, Weinman J, Rolfe BG, Vega-Hernandez M, Bradford JJ, Hollingsworth RI, Ostrom P, Marshall E, Jain T, Orgambide G, Philip-Hollingsworth S, Triplett E, Malik KA, Maya-Flores J, Hartmann A, Umali-Garcia M, Izaguirre-Mayoral ML (2000) Progress in multinational collaborative studies on the beneficial association between Rhizobium leguminosarum bv. trifolii and rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice, 1st edn. International Rice Research Institute (IRRI), Los Baños, pp 167–190

    Google Scholar 

  • De Vleesschauwer D, Cornelis P, Höfte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Interact 19:1406–1419

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Cr Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Drogue B, Sanguin H, Borland S, Prigent-Combaret C, Wisniewski-Dyé F (2014) Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots. FEMS Microbiol Ecol 87:543–555

    Article  CAS  PubMed  Google Scholar 

  • Duarah I, Deka M, Saikia N, Boruah HPD (2011) Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. Biotech 1:227–238

    Google Scholar 

  • Earanna N, Muruli K (2011) Field evaluation of nursery bed inoculated arbuscular mycorrhiza and rootdip inoculated Azotobacter chroococcum and Aspergillus awamori on aerobic rice. J Appl Nat Sci 3:58–61

    Google Scholar 

  • Eisenhauer N, Scheu S, Jousset A (2012) Bacterial diversity stabilizes community productivity. Plos One 7:e34517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  CAS  PubMed  Google Scholar 

  • Estrada GA, Baldani VLD, Oliveira DMD, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369:115–129

    Article  CAS  Google Scholar 

  • Etesami H, Mirsyedhosseini H, Alikhani HA (2013) Rapid screening of berseem clover (Trifolium alexandrinum) endophytic bacteria for rice plant seedlings growth-promoting agents. ISRN Soil Sci 2013:1–9

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2007) Lowland rice response to nitrogen fertilization. Commun Soil Sci Plant Anal 32:1405–1429

    Article  Google Scholar 

  • Fields S (2004) Global nitrogen cycling out of control. Environ Health Perspect 112:556–563

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García de Salamone IE, Di Salvo LP, Ortega JSE, Boa Sorte PMF, Urquiaga S, Teixeira KRS (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362

    Article  CAS  Google Scholar 

  • García-Fraile P, Carro L, Robledo M, Ramírez-Bahena M-H, Flores-Félix J-D, Fernández MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix Á, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. Plos One 7:e38122

  • Ghosh BC, Bhat R (1998) Environmental hazards of nitrogen loading in wetland rice fields. Environ Pollut 102:123–126

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK, Jacobsen OS, Aamand J, Sørensen J (2004) Chemical and microbiological soil characteristics controlling glyphosate mineralisation in Danish surface soils. Appl Soil Ecol 27:233–242

    Article  Google Scholar 

  • Global Rice Science Partnership (GRiSP) (2013) Rice Almanac. International Rice Research Institute, Los Baños

  • Gnanamanickam SS, Immanuel JE (2007) Epiphytic bacteria, their ecology and functions. In: Gnanamanickam SS (ed) Plant-Associated Bacteria, 1st edn. Springer, Dordrecht, pp 131–153

  • Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese crop lands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammouda O (1999) Response of the paddy field cyanobacterium Anabaena doliolum to Carbofuran. Ecotox Environ Safe 44:215–219

    Article  CAS  Google Scholar 

  • Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164

  • Hardoim PR, Hardoim CCP, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. Plos One 7:e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • He H, Li Y, Chen T, Huang X, Guo Q, Li S, Yu T, Li H (2013) Butachlor induces some physiological and biosynthetic changes in a rice field biofertilizer cyanobacterium. Pestic Biochem Physiol 105:224–230

    Article  CAS  Google Scholar 

  • Henry A, Cal AJ, Batoto TC, Torres RO, Serraj R (2012) Root attributes affecting water uptake of rice (Oryza sativa) under drought. J Exp Bot 63:4751–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hertenberger G, Zampach P, Bachmann G (2002) Plant species affect the concentration of free sugars and free amino acids in different types of soil. J Plant Nutr Soil Sci 165:557–565

    Article  CAS  Google Scholar 

  • Hsu S-F, Buckley DH (2009) Evidence for the functional significance of diazotroph community structure in soil. ISME J 3:124–136

    Article  CAS  PubMed  Google Scholar 

  • Hurst SG, Oshone R, Ghodhbane-Gtari F, Morris K, Abebe-Akele F, Thomas WK, Ktari A, Salem K, Mansour S, Gtari M, Tisa LS (2014) Draft genome sequence of Frankia sp. strain Thr, a nitrogen-fixing Actinobacterium isolated from the root nodules of Casuarina cunninghamiana grown in Egypt. Genome Ann 2:e00493-14

  • Hutkins RW (2006) Applications of biotechnology to traditional fermented foods. Wiley–Blackwell, Ames

    Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth–promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  PubMed  Google Scholar 

  • Irisarri P, Gonnet S, Monza J (2001) Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J Biotechnol 91:95–103

    Article  CAS  PubMed  Google Scholar 

  • Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2010) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ 25:58–61

    Article  PubMed  Google Scholar 

  • Islam MDZ, Sattar MA, Ashrafuzzaman M, Saud HM, Uddin MK (2012a) Improvement of yield potential of rice through combined application of biofertilizer and synthetic nitrogen. Afr J Microbiol Res 6:745–750

    Google Scholar 

  • Islam MDR, Sultana T, Cho J-C, Joe MM, Sa TM (2012b) Diversity of free-living nitrogen-fixing bacteria associated with Korean paddy fields. Ann Microbiol 62:1643–1650

    Article  CAS  Google Scholar 

  • Javaid A (2011) Effects of biofertilizers combined with different soil amendments on potted rice plants. Chilean J Agric Res 71:157–163

    Article  Google Scholar 

  • Jha B, Thakur MC, Gontia I, Albrecht V, Stoffels M, Schmid M, Hartmann A (2009) Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. Eur J Soil Biol 45:62–72

    Article  CAS  Google Scholar 

  • Jha M, Chourasia S, Sinha S (2013) Microbial consortium for sustainable rice production. Agroecol Sustain Food System 37:340–362

    Article  Google Scholar 

  • Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivar. Microbiol Res 169:83–98

    Article  CAS  PubMed  Google Scholar 

  • Jones TH, Bradford MA (2001) Assessing the functional implications of soil biodiversity in ecosystems. Ecol Res 16:845–858

    Article  Google Scholar 

  • Kanungo PK, Ramakrishnan B, Rao VR (1997) Placement effects of organic sources on nitrogenase activity and nitrogen-fixing bacteria in flooded rice soils. Biol Fertil Soils 25:103–108

    Article  CAS  Google Scholar 

  • Kavadia A, Vayenas DV, Pavlou S, Aggelis G (2011) Dynamics of a free-living nitrogen- fixing bacteria population lacking of competitive advantage towards an antagonistic population. Open Environ Eng J 4:190–198

    Article  Google Scholar 

  • Keyeo F, Aishah ON, Amir HG (2011) The effects of nitrogen fixation activity and phytohormone production of diazotroph in promoting growth of rice seedlings. Biotechnology 10:267–273

    Article  CAS  Google Scholar 

  • Khorshidi YR, Ardakani MR, Ramezanpour MR, Khavazi K, Zargari K (2011) Response of yield and yield components of rice (Oryza sativa L.) to Pseudomonas fluorescens and Azospirillum lipoferum under different nitrogen levels. Am Eurasian J Agric Environ Sci 10:387–395

  • Khush GS (2001) Green revolution: the way forward. Nat Rev 2:815–822

    Article  CAS  Google Scholar 

  • Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167

    Article  CAS  Google Scholar 

  • Lambrecht M, Okon Y, Broek AV, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trend Microbiol 8:298–300

    Article  CAS  Google Scholar 

  • Leelahawonge C, Pongsilp N (2009) Phosphatase activities of root-nodule bacteria and nutritional factors affecting production of phosphatases by representative bacteria from three different genera. KMITL Sci Technol J 9:65–83

    Google Scholar 

  • Lery LMS, Bitar M, Costa MGS, Rössle SCS, Bisch PM (2010) Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria. BMC Genomics 11:S7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Rosencrantz D, Liesack W, Conrad R (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Lumpkin TA, Plueknett DI (1981) Azolla, a low cost aquatic green manure for agricultural crops. Background papers for innovative biological technologies for lesser developed countries. Available at: https://www.princeton.edu/~ota/disk2/1985/8512/851209.PDF. Accessed 27 Aug 2014

  • Maheshwari DK, Kumar S, Maheshwari NK, Patel D, Saraf M (2012) Nutrient availability and management in the rhizosphere by microorganisms. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Heidelberg, pp 301–326

    Chapter  Google Scholar 

  • Manickavelu A, Nadarajan N, Ganesh SK, Ramalingam R, Raguraman S, Gnanamalar RP (2006) Organogenesis induction in rice callus by cyanobacterial extracellular product. Afr J Biotechnol 5:437–439

    CAS  Google Scholar 

  • Mano H, Tanaka F, Watanabe A, Kaga A, Okunishi S, Morisaki H (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oriza sativa) cultivated in a paddy field. Microbes Environ 21:86–100

    Article  Google Scholar 

  • Mårtensson L, Díez B, Wartiainen I, Zheng W, El-Shehawy R, Rasmussen U (2009) Diazotrophic diversity, nifH gene expression and nitrogenase activity in a rice paddy field in Fujian, China. Plant Soil 325:207–218

  • Matsuda F, Miyazawa H, Wakasa K, Miyagawa H (2005) Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography-electrospray ionization-tandem mass spectrometry. Biosci Biotechnol Biochem 69:778–83

    Article  CAS  PubMed  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux J-P, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA gene and of Pyoverdine production. Dis Control Pest Manag 84:139–146

  • Mazhar S, Hasnain S (2011) Screening of native plant growth promoting cyanobacteria and their impact on Triticum aestivum var. Uqab 2000 growth. Afr J Agric Res 6:3988–3993

    Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9:6001–6009

    Google Scholar 

  • Moghaddam MJM, Emtiazi G, Salehi Z (2012) Enhanced auxin production by Azospirillum pure cultures from plant root exudates. J Agric Sci Technol 14:985–994

    CAS  Google Scholar 

  • Moorman TB, Dowler CC (1991) Herbicide and rotation effects on soil and rhizosphere microorganisms and crop yields. Agric Ecosyst Environ 35:311–325

    Article  CAS  Google Scholar 

  • Muraleedharan H, Seshadri S, Perumal K (2010) Biofertilizer: phosphobacteria. Shri AMM Murugappa Chettiar Research Centre, Chennai

  • Muthukumarasamy R, Kang UG, Park KD, Jeon W-T, Park CY, Cho YS, Kwon S-W, Song J, Roh D-H, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J Appl Microbiol 102:981–991

    CAS  PubMed  Google Scholar 

  • Mwajita MR, Murage H, Tani A, Kahangi EM (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. Springerplus 2:606

  • Naher UA, Radziah O, Halimi MS, Shamsuddin ZH, Razi IM (2008) Specific growth rate and carbon sugar consumption of diazotrophs isolated from rice rhizosphere. J Biol Sci 8:1008–1014

    Article  Google Scholar 

  • Naher UA, Othman R, Shamsuddin ZHJ, Saud HM, Ismail MR (2009) Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. Int J Agr Biol 11:586–590

    Google Scholar 

  • Naher UA, Othman R, Shamsuddin ZHJ, Saud HM, Ismail MR, Rahim KA (2011) Effect of root exuded specific sugars on biological nitrogen fixation and growth promotion in rice (Oryza sativa). AJCS 5:1210–1217

    CAS  Google Scholar 

  • Naureen Z, Hafeez FY, Hussain J, Harrasi AA, Bouqellah N, Roberts MR (2015) Suppression of incidence of Rhizoctonia solani in rice by siderophore producing rhizobacterial strains based on competition for iron. Eur Sci J 11:186–207

    Google Scholar 

  • Nayak S, Prasanna R (2007) Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res 5:103–113

    Article  Google Scholar 

  • Nayak S, Prasanna R, Pabby A, Dominic TK, Singh PK (2004) Effect of urea, blue green algae and Azolla on nitrogen fixation and chlorophyll accumulation in soil under rice. Biol Fertil Soils 40:67–72

    Article  CAS  Google Scholar 

  • Newton WE (2007) Physiology, biochemistry, and molecular biology of nitrogen fixation. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the Nitrogen Cycle, 1st edn. Elsevier, Amsterdam, pp 109–130

  • Okmen G, Ugur A (2011) Influence of bispyribac sodium on nitrogenase activity and growth of cyanobacteria isolated from paddy fields. Afr J Microbiol Res 5:2760–2764

    CAS  Google Scholar 

  • Okon Y, Labandera-Gonzales CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Omar SA, Ismail M (1999) Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts. Folia Microbiol 44:205–212

    Article  CAS  Google Scholar 

  • Orr CH, Leifert C, Cummings SP, Cooper JM (2012) Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. Plos One 7:e52891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Othman R, Naher UA, Yusoff SZ (2013) Effect of urea-N on growth and indoleacetic acid production of Stenotrophomonas maltophilia (Sb16) isolated from rice growing soils in Malaysia. Chilean J Agric Res 73:187–192

    Article  Google Scholar 

  • Pabby A, Prasanna R, Singh PK (2003) Azolla-Anabaena symbiosis—from traditional agriculture to biotechnology. Indian J Biotechnol 2:26–37

    Google Scholar 

  • Panhwar QA, Naher UA, Jusop S, Othman R, Latif MDA, Ismail MR (2014) Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS One 9:e97241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedraza RO, Bellone CH, Bellone SCD, Sorte PMFB, Teixeira KRDS (2009) Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur J Soil Biol 45:36–43

    Article  CAS  Google Scholar 

  • Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2009) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21:135–144

    Article  Google Scholar 

  • Perrine-Walker FM, Prayitno J, Rolfe BG, Weinman JJ, Hocart CH (2007) Infection process and the interaction of rice roots with rhizobia. J Exp Bot 58:3343–3350

    Article  CAS  PubMed  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium—a potential tool for sustainable soil health. J Biofertil Biopest 3:124

    Google Scholar 

  • Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl Soil Ecol 42:141–149

    Article  Google Scholar 

  • Prasanna R, Nayak S (2007) Influence of diverse rice soil ecologies on cyanobacterial diversity and abundance. Wetlands Ecol Manag 15:127–134

    Article  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Joshi M, Rana A, Shivay YS, Nain L (2012) Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C-N sequestration in soil under rice crop. World J Microbiol Biotechnol 28:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Pratte BS, Eplin K, Thiel T (2006) Cross-functionality of nitrogenase components nifH1 and vnfH in Anabaena variabilis. J Bacteriol 188:5806–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prayitno J, Rolfe B (2010) Characterization of endophytic diazotroph bacteria isolated from rice. HAYATI J Biosci 17:73–78

    Article  Google Scholar 

  • Puyvelde SV, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J, Spaepen S (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol 61:723–728

    Article  PubMed  CAS  Google Scholar 

  • Quesada A, Leganés F, Fernández-Valiente E (1997) Environmental factors controlling N2 fixation in Mediterranean rice fields. Microb Ecol 34:39–48

    Article  CAS  PubMed  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Reis VM, Teixeira KRDS, Pedraza RO (2011) What is expected from the genus Azospirillum as a plant growth-promoting bacteria? In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses, 1st edn. Springer, Berlin, pp 123–138

    Chapter  Google Scholar 

  • Rodrigues EP, Rodrigues LS, Oliveira ALMD, Baldani VLD, Teixeira KRDS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Roger PA (1996) Biology and management of the floodwater ecosystem in rice fields. lnternational Rice Research Institute, Los Baños

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Google Scholar 

  • Sarkar A, Manjunath K, Vishwakarma P (2014) Diversity of diazotrophs in tropical rice field under the influence of organic and nitrogen fertilization. Indian J Biotechnol 13:540–543

    CAS  Google Scholar 

  • Shen J, Luo W (2011) Effects of monosulfuron on growth, photosynthesis, and nitrogenase activity of three nitrogen-fixing cyanobacteria. Arch Environ Contam Toxicol 60:34–43

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 100:557–568

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Datta P, Tirkey A, Marskolay S, Tiwari N (2013) Responses of wild type and mutant strains of cyanobacterium Anabaena variabilis under immobilized condition. Bull Environ Pharmacol Life Sci 3:17–20

    Google Scholar 

  • Solaiman MZ, Hirata H (1997) Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant Soil 191:1–12

    Article  CAS  Google Scholar 

  • Souza RD, Beneduzi A, Ambrosini A, Costa PBD, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603

    Article  CAS  Google Scholar 

  • Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Kyaw KM, Toyota K, Motobayashi T (2006) Influence of application of rice straw, farmyard manure, and municipal biowastes on nitrogen fixation, soil microbial biomass N, and mineral N in a model paddy microcosm. Biol Fertil Soils 42:501–505

    Article  Google Scholar 

  • Tawaraya K, Ryota H, Takuro S, Tadao W, Kazuki S, Akira O (2009) Metabolite profiling of rice root exudate under phosphorus deficiency. In: Proc Int Plant Nutrition Colloquium 16. University of California Davis. Available at: https://escholarship.org/uc/item/5n23m80d#page-1. Accessed 10 Oc 2014

  • Tonini A, Cabrera E (2011) Opportunities for global rice research in a changing world-global futures for agriculture project. International Rice Research Institute, Los Baños

    Google Scholar 

  • Torres-Rubio MG, Valencia-Plata SA, Bernal-Castillo J, Martínez-Nieto P (2000) Isolation of enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of Indole-3-Acetic Acid and siderophores, from Colombian rice rhizosphere. Rev Latinoam Microbiol 42:171–176

    Google Scholar 

  • Trân Van V, Berge O, Kê SN, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnan. Plant Soil 218:273–284

    Article  Google Scholar 

  • Unkovich M, Baldock J (2008) Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol Biochem 40:2915–2921

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nature 3:15

    Google Scholar 

  • Watanabe I, Liu CC (1992) Improving nitrogen-fixing systems and integrating them into sustainable rice farming. Plant Soil 141:57–67

    Article  CAS  Google Scholar 

  • Wu WX, Liu W, Lu HH, Chen YX, Devare M, Thies J (2009) Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiol Ecol 67:93–102

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Qin H, Chen Z, Wu J, Wei W (2011) Effect of long-term fertilization on bacterial composition in rice paddy soil. Biol Fertil Soils 47:397–405

    Article  Google Scholar 

  • Xie J-B, Du Z, Bai L, Tian C, Zhang Y, Xie J-Y, Wang T, Liu X, Chen X, Cheng Q, Chen S, Li J (2014) Comparative genomic analysis of N2-fixing and non-N2- fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. Plos Genet 10:e1004231

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336:129–142

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    Article  CAS  PubMed  Google Scholar 

  • Zabaloy MC, Garland JL, Gómez MA (2008) An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl Soil Ecol 40:1–12

    Article  Google Scholar 

  • Zayadan BK, Matorin DN, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK (2014) Promising microbial consortia for producing biofertilizers for rice fields. Microbiology 83:391–397

    Article  CAS  Google Scholar 

  • Zhang Y-Q, Wen M-X, Li X-P, Shi X-J (2013) Long-term fertilisation causes excess supply and loss of phosphorus in purple paddy soil. J Sci Food Agric 94:1175–1183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Pittol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pittol, M., Durso, L., Valiati, V.H. et al. Agronomic and environmental aspects of diazotrophic bacteria in rice fields. Ann Microbiol 66, 511–527 (2016). https://doi.org/10.1007/s13213-015-1154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1154-6

Keywords

Navigation