Skip to main content

Advertisement

Log in

Abundance and ribotypes of phosphate-solubilizing bacteria in Argentinean agricultural soils under no-till management

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Phosphate-solubilizing bacteria (PSB) abundance and ribotypes were examined in the top soil (0–10 cm) of agricultural fields under no-till management sampled in two seasons, summer (February) and late winter (September), in 2010. No-till plots under sustainable agricultural practices (intense crop rotation) or under non-sustainable practices (soybean monocropping) were sampled at four different locations as replicates in a 400-km west–east transect in the most productive agricultural region of Argentina. Natural grasslands were selected close to the cultivated fields for comparative purposes. Culturable heterotrophic bacteria (CHB) were enumerated on nutrient agar plates, and PSB were counted on NBRIP agar plates containing Ca3(PO4)2. The PSB community structure was explored by ribotyping (16S rDNA PCR-restriction fragment length polymorphism). Quantitatively, data showed that the number of CHB and PSB per gram of dry soil was not statistically different among sampled sites, soil management programs or seasons. Qualitatively, ribotyping showed that the most abundant PSB species differed in their fingerprinting patterns among geographical sites, which suggests that local soil conditions impose strong selective constraints. The comparative analysis of PSB ribotypes revealed seasonal differences among February and September isolates for all sampling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agaras B, Wall LG, Valverde C (2012) Specific enumeration and analysis of the community structure of culturable pseudomonads in agricultural soils under no-till management in Argentina. Appl Soil Ecol 61:305–319. doi:10.1016/j.apsoil.2011.11.016

    Article  Google Scholar 

  • Álvarez CR, Torres Duggan M, Chamorro E, D’ambrosio D, Taboada MA (2009) Descompactación de suelos franco limosos en siembra directa: efectos sobre las propiedades edáficas y los cultivos. Cienc Suelo 27:159–169

    Google Scholar 

  • Azziz G, Bajsa N, Haghjoua T, Taulé C, Valverde A, Igual JM, Arias A (2012) Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay rotations. Appl Soil Ecol 61:320–326. doi:10.1016/j.apsoil.2011.10.004

    Article  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479. doi:10.1007/s00374-012-0737-7

    Article  CAS  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213. doi:10.1128/AEM.71.8.4203–4213.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. doi:10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  • Campitelli P, Aoki A, Gudelj O, Rubenacker A, Sereno R (2010) Selección de indicadores de calidad de suelo para determinar los efectos del uso y prácticas agrícolas en un área piloto de la región central de Córdoba. Cienc Suelo 28:223–231

    Google Scholar 

  • Cantú MP, Becker A, Bedano CJ, Schiavo HF (2007) Evaluación de la calidad de suelos mediante el uso de indicadores e índices. Cienc Suelo 25:173–178

    Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OA (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738. doi:10.1007/s00374-010-0480-x

    Article  Google Scholar 

  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249. doi:10.1111/j.1574-6941.2005.00026.x

    Article  CAS  PubMed  Google Scholar 

  • Derpsch R (2008) Critical steps to no-till adoption. In: Goddard T, Zoebisch MA, Gan Y, Ellis W, Watson A, Sombatpanit S (eds) No-till farming systems. World Association of Soil and Water Conservation (WASWC) Special PublicationNo. 3. WASWC, Bangkok, pp 7–22

  • Derpsch R, Friedrich T, Kassam A, Li H (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25. doi:10.3965/j.issn.1934-6344.2010.01.0-0

    Google Scholar 

  • Dezhong S (1997) Microbial diversity and application of microbial products for agricultural purposes in China. Agric Ecosyst Environ 62:237–245

    Article  Google Scholar 

  • Díaz-Zorita M, Duarte GA, Grove JH (2002) A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Tillage Res 65:1–18

    Article  Google Scholar 

  • Fallah A, Kargar A (2006) Abundance and distribution of phosphate solubilizing bacteria and fungi in some soil samples from North of Iran. In: 18th Congress of Soil Science. Available at: http://www.ldd.go.th/18wcss/techprogram/P19283.HTM. Accessed 15 Aug 2013

  • Ferreras L, Magra G, Besson P, Kovalevski E, García F (2007) Indicadores de calidad física en suelos de la región pampeana norte de Argentina bajo siembra directa. Cienc Suelo 25:159–172

    Google Scholar 

  • Figuerola EM, Guerrero LD, Rosa SM, Simonetti L, Duval ME, Galantini JA, Bedano JC, Wall LG, Erijman E (2012) Bacterial indicator of agricultural management for soil under no-till crop production. PLoS ONE 7:1–12. doi:10.1371/journal.pone.0051075

    Article  Google Scholar 

  • Giuffré L, Romaniuk R, Conti ME, Bartoloni N (2006) Multivariate evaluation by quality indicators of no-tillage system in Argiudolls of rolling pampa (Argentina). Biol Fertil Soils 42:556–560. doi:10.1007/s00374-005-0051-8

    Article  Google Scholar 

  • Grönemeyer JL, Burbano CS, Hurek T, Reinhold-Hurek B (2012) Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil 356:67–82. doi:10.1007/s00374-0100480x

    Article  Google Scholar 

  • Horrigan L, Lawrence RS, Walker P (2002) How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect 110:445–456

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu J, Lin X, Wang J, Chu H, Yin R, Zhang J (2009) Population size and specific potential of P-mineralizing and solubilizing bacteria under long-term P deficiency fertilization in a sandy loam soil. Pedobiologia–Int J Soil Biol 53:49–58. doi:10.1016/j.pedobi.2009.02.002

  • Kämpfer P (2007) Taxonomy of phosphate soubilizing bacteria. In: Velázquez E, Rodríguez-Barrueco M (eds) Developments in plant and soil science (1st Int Meet Microbial Phosphate Solubilization). Springer SBM, Dordrecht, pp 101–106

    Chapter  Google Scholar 

  • Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168

    Article  CAS  PubMed  Google Scholar 

  • Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    Article  CAS  Google Scholar 

  • Kumar K, Goh KM (2000) Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield and nitrogen recovery. Adv Agron 68:198–279

    Google Scholar 

  • Kundu BS, Nehra K, Yadav R, Tomar M (2009) Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana. Indian J Microbiol 49:120–127. doi:10.1007/s12088-009-0016-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    Article  CAS  PubMed  Google Scholar 

  • Martensson AM, Carigren K (1994) Impact of P fertilization on VAM diasporas in two Swedish long term field experiments. Agric Ecosyst Environ 47:327–334. doi:10.1016/0167-8809 (94)90099-X

    Article  Google Scholar 

  • Mittal S, Johri BN (2008) Influence of management practices on the diversity of pseudomonads in rhizosphere soil of wheat cropping system. Biol Fertil Soils 44:823–831. doi:10.1007/s00374-007-0264-0

    Article  Google Scholar 

  • Nahas E (2007) Phosphate solubilizing microorganisms: effects of carbon, nitrogen and phosphorus. In: Velazquez E, Rodriguez-Barrueco C (eds) Developments in plant and soil science (1st Int Meet Microbial Phosphate Solubilization). Springer SBM, Dordrecht, pp 111–115

    Chapter  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. doi:10.1111/j.1574-6968.1999.tb13383.x

    Article  CAS  PubMed  Google Scholar 

  • Ndung’u-Magiroi KW, Herrmann L, Okalebo JR, Othieno CO, Pypers P, Lesueur D (2012) Occurrence and genetic diversity of phosphate-solubilizing bacteria in soils of differing chemical characteristics in Kenya. Ann Microbiol 62:897–904. doi:10.1007/s13213-011-0326-2

    Article  Google Scholar 

  • Panhwar QI, Radziah O, Sariah M, Ismail MR (2012) Solubilization of different phosphate forms by phosphate solubilizing bacteria. Int J Agric Biol 11:667–673

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110. doi:10.1016/S0038-0717(00)00120-6

    Article  CAS  Google Scholar 

  • Picard C, Di Cello F, Vestura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955. doi:10.1128/AEM. 66.3.948-955.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Picone L, Capozzi I, Zamuner E, Echeverría H, Sainz Rozas H (2007) Transformaciones de fósforo en un molisol bajo sistemas de labranza contrastantes. Cienc Suelo 25:99–107

    Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  CAS  PubMed  Google Scholar 

  • Ravindra Naik P, Raman G, Narayanan KB, Sakthivel N (2008) Assesment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230. doi:10.1186/1471-2180-8-230

    Article  Google Scholar 

  • Reyes I, Valery A, Valduz Z (2007) Phosphate solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizers plants at an abandoned rock phosphate mine. In: Velázquez E, Rodríguez-Barrueco M (eds) Developments in plant and soil science (1st Int Meet Microbial Phosphate Solubilization). Springer SBM, Dordrecht, pp 69–75

    Chapter  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. doi:10.1007/s11104-006-9056-9

    Article  Google Scholar 

  • Santa Regina I, Peix A, Díaz T, Rodríguez Barrueco C, Velázquez E (2007) Effects of plant community composition on total soil microbiota and on phosphate solubilizing bacteria of ex-arable lands. In: Velázquez E, Rodríguez-Barrueco M (eds) Developments in plant and soil science (1st Int Meet Microbial Phosphate Solubilization). Springer SBM, Dordrecht, pp 277–280

    Chapter  Google Scholar 

  • Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’Gara F (2013) Long-term phosphorus fertilization increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol Fertil Soils 49:661–672. doi:10.1007/s00374-012-0755-5

    Article  CAS  Google Scholar 

  • Van Verseveld HW, Röling WFM (2008) Cluster analysis and statistical comparison of molecular community profile data. In: Kowalchuk GA, Bruijn FJ, Head I, Akkermans AD, van Elsas JD (eds) Molecular microbial ecology manual, 2nd edn. Springer SBM, Dordrecht, pp 1373–1396

  • Wall LG (2011) The BIOSPAS consortium. In: de Bruijn F (ed) Handbook of molecular microbial ecology I. Wiley-Blackwell, Hoboken, pp 299–306

    Chapter  Google Scholar 

  • Wallenius K (2011) Microbiological characterization of soils: evaluation of some critical steps in data collection and experimental design. PhD thesis. Department of Food and Environmental Sciences, University of Helsinki, Finland

Download references

Acknowledgments

This work was supported by grants PAE 36976-PID 52 (Agencia Nacional de Promoción Científica y Tecnológica, Argentina), PIP 112-200801-02271 (CONICET, Argentina) and PUNQ 0395/07 (Universidad Nacional de Quilmes, Argentina). We would like to thank Marina Díaz, Liliana Gallez, and Celina Zabaloy from Universidad Nacional del Sur for providing laboratory facilities to carry out experimental ribotype analysis of PSB isolates of part of the samples. LF and BA were supported by CONICET through post-doctoral and Ph.D. fellowships, respectively. LGW and CV are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia A. Fernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 2

(DOC 125 kb)

ESM 2

(DOC 3.88 mb)

ESM 3

(DOC 127 kb)

ESM 3

(DOC 109 kb)

ESM 3

(DOC 109 kb)

(DOC 108 kb)

(DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, L.A., Agaras, B., Wall, L.G. et al. Abundance and ribotypes of phosphate-solubilizing bacteria in Argentinean agricultural soils under no-till management. Ann Microbiol 65, 1667–1678 (2015). https://doi.org/10.1007/s13213-014-1006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-1006-9

Keywords

Navigation