Skip to main content
Log in

Expression of human interleukin-1β in Saccharomyces cerevisiae using PIR4 as fusion partner and production in aerated fed-batch reactor

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

To circumvent cell wall retention commonly associated to Saccharomyces cerevisiae when used as a host for heterologous protein production, we have created a translational fusion of human interleukin-1β (IL-1β) to the Pir4 cell wall protein, so as to drive the secretion of the recombinant product to the growth medium. The auxotrophic S. cerevisiae BY4741 was used as host to express the Pir4-IL1β fusion protein. Once it was ascertained that the fusion protein was secreted to the culture medium and behaved as a growth-linked product, S. cerevisiae BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor to achieve high cell density and, consequently, high product concentration in the medium. Two cultivation media were employed, a rich complex and a defined mineral medium, the latter suitably supplemented with bacto-casamino acids as ACA (auxotrophy-complementing amino acid) source. The rich complex medium allowed a good performance of the producer strain only during batch growth, but was revealed to be inadequate for long-term fed-batch operations. The defined mineral medium ensured a better performance, even though not yet satisfactory in spite of a proper ACA supplementation. The behaviour of BY4741 was attributed to an intrinsic sensitivity of the producer strain to long-term aerated fed-batch operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrés I, Gallardo O, Parascandola P, Pastor J, Zueco J (2005) Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp.BP-7 xylanase A in Saccharomyces cerevisiae. Biotechnol Bioeng 89:690–697

    Article  PubMed  Google Scholar 

  • Andrés I, Rodriguez-Diaz J, Buesa J, Zueco J (2006) Yeast expression of the VP8* Fragment of the rotavirus spike protein and its use as immunogenic in mice. Biotechnol Bioeng 93:89–98

    Article  PubMed  Google Scholar 

  • Bitterman KJ, Medvedik O, Sinclair DA (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67:376–399

    Article  CAS  PubMed  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other. Yeast 14(2):115–132

    Article  CAS  PubMed  Google Scholar 

  • Çakar ZP, Sauer U, Bailey JE (1999) Metabolic engineering of yeast: the perils of auxotrophic hosts. Biotechnol Lett 21:611–616

    Article  Google Scholar 

  • Casagli MC, Borri MG, Bigio M, Rossi R, Nucci D (1989) Different conformation of purified recombinant interleukin 1β from Escherichia coli and Saccharomyces cerevisiae is related to different level of biological activity. Biochem Biophys Res Commun 162:357–363

    Article  CAS  PubMed  Google Scholar 

  • Chopra R, Sharma VM, Ganesan K (1999) Elevated growth of Saccharomyces cerevisiae ATH1 null mutants on glucose is an artefact of nonmatching auxotrophies of mutant and reference strains. Appl Environ Microbiol 65:2267–2268

    CAS  PubMed  Google Scholar 

  • Da Silva NA, Bailey JE (1991) Influence of plasmid origin and promoter strength in fermentations of recombinant yeast. Biotechnol Bioeng 37:318–324

    Article  PubMed  Google Scholar 

  • De Nobel JG, Barnett JA (1991) Passage of molecules through yeast cell wall: a brief assay-review. Yeast 7:313–323

    Article  PubMed  Google Scholar 

  • Enfors SO (2001) Baker’s yeast. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, pp 377-389

  • Fleer R, Chen XJ, Amellal N, Yeh P, Fournier P, Guinet F, Gault N, Faucher D, Folliard F, Fukuhara H, Mayaux JF (1991) High-level secretion of correctly processed recombinant human interleukin-1β in Kluyveromyces lactis. Gene 107:285–295

    Article  CAS  PubMed  Google Scholar 

  • Görgens JF, van Zyl WH, Knoetze JH, Hahn-Hägerdal B (2001) The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 73:238–245

    Article  PubMed  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vector constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact 4:31–46

    Article  PubMed  Google Scholar 

  • Hensing MCM, Rouwenhorst RJ, Heijnen JJ, Van Dijken JP, Pronk JT (1995) Physiological and technological aspects of large-scale heterologous protein production with yeasts. Antonie Leeuwenhoek 67:261–279

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Vega O, Sabatiè J, Brown SW (1994) Industrial production of heterologous proteins by fed-batch cultures of the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 15:369–410

    Article  CAS  PubMed  Google Scholar 

  • Mormeneo M, Andrés A, Bofill C, Díaz P, Zueco J (2008) Efficient secretion of Bacillus subtilis lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein. Appl Microbiol Biotechnol 80:437–445

    Article  CAS  PubMed  Google Scholar 

  • Moukadiri I, Zueco J (2001) Evidence for the attachment of Hsp150/Pir2 to the cell wall of S. cerevisiae through disulfide bridges. FEMS Yeast Res 1:241–245

    CAS  PubMed  Google Scholar 

  • Moukadiri I, Jafar L, Zueco J (1999) Identification of two mannoproteins released from cell walls of Saccharomyces cerevisiae mnn1 and mnn9 double mutant by reducing agents. J Bacteriol 181:4741–4745

    CAS  PubMed  Google Scholar 

  • Nelson NA (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Porro D, Branduardi P, Sauer M, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259

    Article  CAS  PubMed  Google Scholar 

  • Pronk JT (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68:2095–2100

    Article  CAS  PubMed  Google Scholar 

  • Pucci P, Siciliano R, Ferranti P, Matorni A, Marino G (1990) Mass spectrometric characterization of recombinant human interleukin 1 beta. Biotechnol Appl Biochem 12:357–363

    CAS  PubMed  Google Scholar 

  • Riesenberg D (1991) High-cell-density cultivation of Escherichia coli. Curr Opin Biotechnol 2:380–384

    Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    Article  CAS  PubMed  Google Scholar 

  • Romano V, Paciello L, Romano F, de Alteriis E, Brambilla L, Parascandola P (2009) Interleukin-1β production by Zygosaccharomyces bailii [pZ3KlIL-1β) in aerated fed-batch reactor: importance of inoculum physiology and bioprocess modelling. Process Biochem 44:527–533

    Article  CAS  Google Scholar 

  • Shiba Y, Ono C, Fukui F, Watanabe I, Serizawa N, Gomi K, Yoshikawa H (2001) High-level secretory production of phospholipase A by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci Biotechnol Biochem 65:94–101

    Article  CAS  PubMed  Google Scholar 

  • van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin MLF, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindeløv J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714

    Article  PubMed  Google Scholar 

  • vanDusen WJ, Fu J, Bailey J, Burke CJ, Herber WK, George HA (1997) Adenine quantitation in yeast extracts and fermentation media and its relationship to protein expression and cell growth in adenine auxotrophs of Saccharomyces cerevisiae. Biotechnol Prog 13:1–7

    Article  CAS  PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Reddy J, Buckland B, Greasham R (2003) Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 82:640–652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by University of Salerno funds (ex 60%, 2008) to P. Parascandola in the framework of the research project “Heterologous protein production by engineered yeast cells: importance of host viability” and a grant to J. Zueco ISCIII2006-PI0731 from the Ministerio de Sanidad/Instituto de la Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palma Parascandola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paciello, L., Andrès, I., Zueco, J. et al. Expression of human interleukin-1β in Saccharomyces cerevisiae using PIR4 as fusion partner and production in aerated fed-batch reactor. Ann Microbiol 60, 719–728 (2010). https://doi.org/10.1007/s13213-010-0122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0122-4

Keywords

Navigation