Skip to main content
Log in

Physiological and technological aspects of large-scale heterologous-protein production with yeasts

  • Research Papers
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Commercial production of heterologous proteins by yeasts has gained considerable interest. Expression systems have been developed forSaccharomyces cerevisiae and a number of other yeasts. Generally, much attention is paid to the molecular aspects of heterologous-gene expression. The success of this approach is indicated by the high expression levels that have been obtained in shake-flask cultures. For large-scale production however, possibilities and restrictions related to host-strain physiology and fermentation technology also have to be considered. In this review, these physiological and technological aspects have been evaluated with the aid of numerical simulations. Factors that affect the choice of a carbon substrate for large-scale production involve price, purity and solubility. Since oxygen demand and heat production (which are closely linked) limit the attainable growth rate in large-scale processes, the biomass yield on oxygen is also a key parameter. Large-scale processes impose restrictions on the expression system. Many promoter systems that work well in small-scale systems cannot be implemented in industrial environments. Furthermore, large-scale fed-batch fermentations involve a substantial number of generations. Therefore, even low expression-cassette instability has a profound effect on the overall productivity of the system. Multicopy-integration systems may provide highly stable expression systems for industrial processes. Large-scale fed-batch processes are typically performed at a low growth rate. Therefore, effects of a low growth rate on the physiology and product formation rates of yeasts are of key importance. Due to the low growth rates in the industrial process, a substantial part of the substrate carbon is expended to meet maintenance-energy requirements. Factors that reduce maintenance-energy requirements will therefore have a positive effect on product yield. The relationship between specific growth rate and specific product formation rate (kg product·[kg biomass]−1·h−1) is the main factor influencing production levels in large-scale production processes. Expression systems characterized by a high specific rate of product formation at low specific growth rates are highly favourable for large-scale heterologous-protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberghina L, Porro D, Martegani E & Ranzi BM (1991) Efficient production of recombinant DNA proteins inSaccharomyces cerevisiae by controlled high-cell-density fermentation. Biotechnol. Appl. Biochem. 14: 82–92

    PubMed  Google Scholar 

  • Alexander B, Leach S & Ingledew WJ (1987) The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophileThiobacillus ferrooxidans. J. Gen. Microbiol. 133: 1171–1179

    Google Scholar 

  • Arbige MV & Pitcher WH (1989) Industrial enzymology: a look towards the future. Trends Biotechnol. 7: 330–335

    Google Scholar 

  • Beggs JD, van der Berg J, van Ooyen A & Weissman C (1980) Abnormal expression of chromosomal rabbit \-globin inSaccharomyces cerevisiae. Nature 283: 835–840

    PubMed  Google Scholar 

  • Bergkamp RJM, Kool IM, Geerse RH & Planta RJ (1992) Multiplecopy integration of the α-galactosidase gene fromCyamopsis tetragonoloba into the ribosomal DNA ofKluyveromyces lactis. Curr. Genet. 21: 365–370

    PubMed  Google Scholar 

  • Bergkamp RJM (1993) Heterologous gene expression inKluyveromyces yeasts. PhD Thesis, University of Amsterdam, The Netherlands

    Google Scholar 

  • Beudeker RF, van Dam HW, van der Plaat JB & Vellenga K (1990) Developments in bakers' yeast production. In: Verachtert H & de Mot R (Eds) Yeast Biotechnology and Biocatalysis (pp. 103–145. Marcel Dekker Inc., New York

    Google Scholar 

  • Bianchi MM, Santarelli R & Frontali L (1991) Plasmid functions involved in the stable propagation of the pKD1 circular plasmid inKluyveromyces lactis. Curr. Genet. 19: 155–161

    PubMed  Google Scholar 

  • Bijvoet JFM, van der Zanden AL, Goosen N, Brouwer J & van de Putte P (1991) DNA insertions in the silent regions of the 2µm plasmid ofSaccharomyces cerevisiae influence plasmid stability. Yeast 7: 347–356

    PubMed  Google Scholar 

  • Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Valenzuela P & Barr PJ (1984) α-factor-directed synthesis and secretion of mature foreign proteins inSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81: 4642–4646

    Google Scholar 

  • Brierley RA, Siegel RS, Bussineau CM, Craig WS, Holtz GC, Davis GR, Buckholz RG, Thill GP, Wondrack LM, Digan ME, Harpold MM, Lair SV, Ellis SB & Williams ME (1990) Mixed feed recombinant yeast fermentation. W.O. Patent 90/03431

  • Buckholz RG & Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/Technology 9: 1067–1072

    PubMed  Google Scholar 

  • Cameron JR, Loh EY & Davis RW (1979) Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16: 739–751

    Article  PubMed  Google Scholar 

  • Chen SL & Gutmanis F (1976) Carbon dioxide inhibition of yeast growth in biomass production. Biotechnol. Bioeng. 18: 1455–1462

    PubMed  Google Scholar 

  • Cheng SC & Ogrydziak DM (1986) Extracellular RNase produced byYarrowia lipolytica. J. Bacteriol. 168: 581–589

    PubMed  Google Scholar 

  • Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K & Romanos MA (1991a) High-level expression of tetanus toxin fragment c inPichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9: 455–460

    PubMed  Google Scholar 

  • Clare JJ, Romanos MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K & Henwood CA (1991b) Production of mouse epidermal growth factor in yeast: high-level secretion usingPichia pastoris strains containing multiple gene copies. Gene 105: 205–212

    PubMed  Google Scholar 

  • Couderc R & Barratti J (1980) Oxidation of methanol by the yeastPichia pastoris. Purification and properties of alcohol oxidase. Agric. Biol. Chem. 44: 2279–2289

    Google Scholar 

  • Cregg JM, Tschopp JF, Stillman C, Siegel R, Akong M, Craig WS, Buckholz RG, Madden KR, Kellaris PA, Davis GR, Smiley BL, Cruze J, Torregrossa R, Veliçelebi G & Thill GP (1987) High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeastPichia pastoris. Bio/Technology 5: 479–485

    Google Scholar 

  • DaSilva NA & Bailey JE (1989) Construction and characterization of a temperature-sensitive expression system in yeast. Biotech. Prog. 5: 18–26

    Google Scholar 

  • De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44: 149–156

    PubMed  Google Scholar 

  • De Hollander JA (1993) Kinetics of microbial product formation and its consequences for the optimization of fermentation processes. Antonie van Leeuwenhoek 63: 375–381

    PubMed  Google Scholar 

  • Diers I (1976) Glucose isomerase inBacillus coagulans. In: Dean ACR, Ellwood DC, Evans CGT & Melling J (Eds) Continuous Culture 6: Applications and New Fields (pp. 208–225) Ellis Horwood, Chichester

    Google Scholar 

  • Digan ME, Lair SV, Brierley RA, Siegel RS, Williams ME, Ellis SB, Kellaris PA, Provow SA, Craig WS, Veliçelebi G, Harpold MM & Thill GP (1989) Continuous production of a novel lysozyme via secretion from the yeast,Pichia pastoris. Bio/Technology 7: 160–164

    Google Scholar 

  • Ellis SB, Brust PF, Koutz PJ, Waters AF, Harpold MM & Gingeras TR (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeastPichia pastoris. Mol. Cell. Biol. 5: 1111–1121

    PubMed  Google Scholar 

  • Erhart E & Hollenberg CP (1983) The presence of a defectiveLEU2 gene on 2µm DNA recombinant plasmids ofSaccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156: 625–635

    PubMed  Google Scholar 

  • Falcone C, Saliola M, Chen XJ, Frontali L & Fukuhara H (1986) Analysis of a 1.6 µm circular plasmid from the yeastKluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15: 248–252

    PubMed  Google Scholar 

  • Fiechter A, Fuhrmann GF & Käppeli O (1981) Regulation of glucose metabolism in growing yeast cells. Adv. Microb. Physiol. 22: 123–183

    PubMed  Google Scholar 

  • Fieschko JC, Egan KM, Ritch T, Koski RA, Jones M & Bitter GA (1987) Controlled expression and purification of human immune interferon from high-cell-density fermentations ofSaccharomyces cerevisiae. Biotechnol. Bioeng. 29: 1113–1121

    Google Scholar 

  • Fleer R, Yeh P, Amellal N, Maury I, Fournier A, Bacchetta F, Baduel P, Jung G, L'Hôte H, Becquart J, Fukuhara H & Mayaux JF (1991) Stable multicopy vectors for high-level secretion of recombinant human serum albumin byKluyveromyces yeasts. Bio/technology 9: 968–975

    Google Scholar 

  • Fukasawa T & Nogi Y (1989) Molecular genetics of galactose metabolism in yeast. In: Barr PJ & Valenzuela P (Eds) Yeast genetic Engineering (pp. 1–18) Butterworths, Stoneham

    Google Scholar 

  • Futcher AB (1988) The 2 µm circle plasmid ofSaccharomyces cerevisiae. Yeast 4: 27–40

    PubMed  Google Scholar 

  • Futcher AB & Cox BS (1984) Copy number and stability of 2 µm circle-based artificial plasmids ofSaccharomyces cerevisiae. J. Bacteriol. 157: 283–290

    PubMed  Google Scholar 

  • Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP & Strasser AWM (1991) Heterologous gene expression inHansenula polymorpha: efficient secretion of glucoamylase. Bio/technol. 9: 291–295

    Google Scholar 

  • Gellissen G, Melber K, Janowicz ZA, Dahlems UM, Weydemann U, Pointek M, Strasser AWM & Hollenberg CP (1992) Heterologous protein production in yeast. Antonie van Leeuwenhoek 62: 79–93

    Google Scholar 

  • Giuseppin MLF, van Eijk HMJ, Bos A, Verduyn C & van Dijken JP (1988) Utilization of methanol in a catalase-negative mutant ofHansenula polymorpha. Appl. Microbiol. Biotechnol. 28: 286–292

    Google Scholar 

  • Giuseppin MLF, Almkerk JW, Heistek JC & Verrips CT (1993) Comparative study on the production of guar α-galactosidase bySaccharomyces cerevisiae SU50B andHansenula polymorpha 8/2 in continuous culture. Appl. Environ. Microbiol. 59: 52–59

    PubMed  Google Scholar 

  • Goodey AR (1993) The production of heterologous plasma proteins. Trends Biotechnol. 11:430–433

    PubMed  Google Scholar 

  • Graefe G (1975) Zucker und Zuckeralkohole. Starch 5: 160–169

    Google Scholar 

  • Gu MB, Park MH & Kim DI (1991) Growth rate control in fedbatch cultures of recombinantSaccharomyces cerevisiae producing hepatitis B surface antigen (HBsAg). Appl. Microbiol. Biotechnol. 35: 46–50

    PubMed  Google Scholar 

  • Hacking AJ (1986) Economic aspects of biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  • Hagenson MJ, Holden KA, Parker KA, Wood PJ, Cruze JA, Fuke M, Hopkins TR & Stroman DW (1989) Expression of streptokinase inPichia pastoris yeast. Enzyme Microb. Technol. 11: 650–656

    Google Scholar 

  • Heinisch JJ & Hollenberg CA (1993) Yeast. In: Sahm H (Ed) Biotechnology Vol. 1 (pp. 469–514) VCH, Weinheim

    Google Scholar 

  • Heijnen JJ, Roels JA & Stouthamer AH (1979) Application of balancing methods in modeling the penicillin fermentation. Biotechnol. Bioeng. 21: 2175–201

    PubMed  Google Scholar 

  • Heijnen JJ, Terwisscha van Scheltinga AH & Straathof AJ (1992) Fundamental bottlenecks in the application of continuous bioprocesses. J. Biotechnol. 22: 3–20

    PubMed  Google Scholar 

  • Heslot H (1990) Genetics and genetic engineering of the industrial yeastYarrowia lipolytica. Adv. Biochem. Eng. Biotechnol. 43: 43–71

    Google Scholar 

  • Hinnen A, Meyhack B & Heim J (1989) Heterologous gene expression in yeast. In: Barr PJ, Brake AJ & Valenzuela P (Eds) Yeast genetic engineering (pp. 193–213) Butterworths, Stoneham

    Google Scholar 

  • Hodgkins M, Mead D, Ballance DJ, Goodey A and Sudbery P (1993) Expression of the glucose oxidase gene fromAspergillus niger inHansenula polymorpha and its use as a reporter gene to isolate regulatory mutations. Yeast 9: 625–635

    PubMed  Google Scholar 

  • Hoffman CS & Winston F (1989) A transcriptionally regulated expression vector for the fission yeastSchizosaccharomyces pombe. Gene 84: 473–479

    PubMed  Google Scholar 

  • Hough JS, Keevil CW, Maric V, Philliskirk G & Young TW (1976) Continuous culture in brewing. In: Dean ACR, Ellwood DC, Evans CGT & Melling J (Eds) Continuous culture 6: Applications and new fields (pp. 226–237) Ellis Horwood, Chicester

    Google Scholar 

  • Hovland P, Flick J, Johnston M & Sclafani RA (1989) Galactose as a gratuitous inducer ofGAL gene expression in yeasts growing in glucose. Gene 83: 57–64

    PubMed  Google Scholar 

  • Janowicz ZA, Merckelbach A, Eckart M, Weydmann U, Roggenkamp R & Hollenberg CP (1988) Expression system based on the methylotrophic yeastHansenula polymorpha. Yeast 4: S155

  • Johnston M (1987) A model fungal gene regulatory mechanism: theGAL genes ofSaccharomyces cerevisiae. Microbiol. Rev. 51: 458–476

    PubMed  Google Scholar 

  • Kirk, N & Piper PW (1991) The determinants of heat-shock-element-directed lacZ expression inSaccharomyces cerevisiae. Yeast 7: 539–541

    PubMed  Google Scholar 

  • Kramer RA, DeChiara TM, Schaber MD & Hilliker S (1984) Regulated expression of a human interferon gene in yeast: control by phosphate concentration or temperature. Proc. Natl. Acad. Sci. USA 81: 367–370

    PubMed  Google Scholar 

  • Ledeboer AM, Edens L, Maat J, Visser C, Bos JW, Verrips CT, Janowicz ZA, Eckart M, Roggenkamp R & Hollenberg CP (1985) Molecular cloning and characterisation of a gene coding for methanol oxidase inHansenula polymorpha. Nucl. Acids Res. 13: 3063–3082

    Google Scholar 

  • Lelieveld HLM (1984) Mixed-strain continuous milk fermentation. Proc. Biochem. 19: 112–113

    Google Scholar 

  • Lopes TS, Klootwijk J, Veenstra AE, Van der Aar PC, van Heerikhuizen H, Raué HA & Planta RJ (1989) High-copy-number integration into the ribosomal DNA ofSaccharomyces cerevisiae: a new vector for high-level expression. Gene 79: 199–206

    PubMed  Google Scholar 

  • Martegani E, Forlani N, Mauri I, Porro D, Schleuning WD & Alberghina L (1992) Expression of high levels of human tissue plasminogen activator in yeast under the control of an inducibleGAL promoter. Appl. Microbiol. Biotechnol. 37: 604–608

    PubMed  Google Scholar 

  • Mason CA & Hamer G (1987) Cryptic growth inKlebsiella pneumoniae. Appl. Microbiol. Biotechnol. 25: 577–584

    Google Scholar 

  • Mason CA (1991) Physiological aspects of growth and recombinant DNA stability inSaccharomyces cerevisiae. Antonie van Leeuwenhoek 59: 269–283

    PubMed  Google Scholar 

  • Matoba S & Ogrydziak DM (1989) A novel location for dipeptidyl aminopeptidase processing sites in the alkaline extracellular protease ofYarrowia lipolytica. J. Biol. Chem. 264: 6037–6043

    PubMed  Google Scholar 

  • Murray AW & Szostak JW (1983) Pedigree analysis of plasmid segregation in yeast. Cell 34: 961–970

    PubMed  Google Scholar 

  • Newmark P (1989) Danish law to be less rigid. Nature 339: 653

    Google Scholar 

  • Nicaud JM, Fabre E & Gaillardin C (1989) Expression of invertase activity inYarrowia lipolytica and its use as a selective marker. Curr. Genet. 16: 253–260

    PubMed  Google Scholar 

  • Onken U & Liefke E (1989) Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbiol processes. Adv. Biochem. Eng. Biotechnol. 40: 137–169

    PubMed  Google Scholar 

  • Petrik M, Käppeli O & Fiechter A (1983) An expanded concept for the glucose effect in the yeastSaccharomyces uvarum: involvement of short- and long-term regulation. J. Gen. Microbiol. 129: 43–49

    Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc. Royal Soc. London 163B: 224–231

    Google Scholar 

  • Pirt SJ (1974) The theory of fed batch culture with reference to the penicillin fermentation. J. Appl. Chem. Biotechnol. 24: 415–424

    Google Scholar 

  • Poldermans B (1989) Commerciële enzymen en koolhydraten. Koolhydraten in Nederland 5: 25–28

    Google Scholar 

  • Postma E, Verduyn C, Scheffers WA & van Dijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures ofSaccharomyces cerevisiae. Appl. Env. Microbiol. 55: 468–477

    Google Scholar 

  • Präve P, Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (1990) Ubersicht über eine Auswahl der wichtigsten Substrate und Substrat-Kosten für die technische Fermentation (1989/1990). In: Jahrbuch Biotechnologie Band 3 (pp. 523–524) Carl Hanser Verlag, München.

    Google Scholar 

  • Reiser J, Glumoff V, Kälin M & Ochsner U (1990) Transfer and expression of heterologous genes in yeasts other thanSaccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 43: 75–102

    PubMed  Google Scholar 

  • Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Roggenkamp R, Hansen H, Eckart M, Janowicz Z & Hollenberg CP (1986) Transformation of the methylotrophic yeastHansenula polymorpha by autonomous replication and integration vectors Mol. Gen. Genet. 202: 302–308

    Google Scholar 

  • Romanos MA, Clare JJ, Beesley KM, Rayment FB, Ballantine SP, Makoff AJ, Dougan G, Fairweather NF & Charles IG (1991) RecombinantBordetella pertussis pertactin (p69) from the yeastPichia pastoris: high-level production and immunological properties. Vaccine 9: 901–906

    PubMed  Google Scholar 

  • Romanos MA, Scorer CA & Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8: 423–488

    PubMed  Google Scholar 

  • Rossolini GM, Riccio ML, Gallo E & Galeotti CL (1992)Kluyveromyces lactis rDNA as a target for multiple integration by homologous recombination. Gene 119: 75–81

    PubMed  Google Scholar 

  • Schultz LD, Hofmann KJ, Mylin LM, Montgomery DL, Ellis RW & Hopper JE (1987) Regulated overproduction of theGAL4 gene product greatly increases expression from galactose-inducible promoters on multi-copy expression vectors in yeast. Gene 61: 123–133

    PubMed  Google Scholar 

  • Sledziewski AZ, Bell A, Kelsay K & MacKay VL (1988) Construction of temperature-regulated yeast promoters using the MATα2 repression system. Bio/Technology 6: 411–416

    Google Scholar 

  • Sreekrishna K, Potenz RHB, Cruze JA, McCombie WR, Parker KA, Nelles L, Mazzaferro PK, Holden KA, Harrison RG, Wood PJ, Phelps DA, Hubbard CE & Fuke M (1988) High level expression of heterologous proteins in methylotrophic yeastPichia pastoris. J. Basic Micobiol. 28: 265–278

    Google Scholar 

  • Sreekrishna K, Nelles L, Potenz R, Cruze J, Mazzaferro P, Fish W, Fuke M, Holden K, Phelps D, Wood P & Parker K (1989) High-level expression, purification and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeastPichia pastoris. Biochem. 28: 4117–4125

    Google Scholar 

  • Srienc F, Campbell JL & Bailey JE (1986) Analysis of unstable recombinantSaccharomyces cerevisiae population growth in selection medium. Biotechnol. Bioeng. 28: 996–1006

    Google Scholar 

  • Stouthamer AH & Bettenhausen C (1973) Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. Biochim. Biophys. Acta 301: 53–70

    PubMed  Google Scholar 

  • Stouthamer AH & van Verseveld HW (1985) Stoichiometry of microbial growth. In: Moo-Young M, Bull T & Dalton H (Eds) Comprehensive Biotechnology Vol. 1 (pp. 215–238) Pergamon press, Oxford

    Google Scholar 

  • Stouthamer AH & van Verseveld HW (1987) Microbial energetics should be considered in manipulating metabolism for biotechnological purposes. Trends Biotechnol 5: 149–155

    Google Scholar 

  • Terwisscha van Scheltinga AH (1990) General production methods. In: Gerhartz W (Ed) Enzymes in industry: Production and application (pp. 33–43) VCH Verlaggesellschaft Weinberg, Germany

    Google Scholar 

  • Tøttrup HV & Carlsen S (1990) A process for the production of human proinsulin inSaccharomyces cerevisiae. Biotechnol. Bioeng 35: 339–348

    Google Scholar 

  • Tschopp JF, Sverlow G, Kosson R, Craig W & Grinna L (1987) High-level secretion of glycosylated invertase in the methylotrophic yeast,Pichia pastoris. Bio/Technology 5: 1305–1308

    Google Scholar 

  • Turner BG, Avgerinos GC, Melnick LM & Moir DT (1991) Optimization of pro-urokinase secretion from recombinantSaccharomyces cerevisiae. Biotechnol. Bioeng. 37: 869–875

    Google Scholar 

  • Van den Berg JA, Van der Laken KJ, Van Ooyen AJJ, Renniers TCHM, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D, Richman M & Shuster JR (1990).Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8: 135–139

    PubMed  Google Scholar 

  • Van Dijken JP, Otto R & Harder W (1976). Growth ofHansenula polymorpha in a methanol limited chemostat: physiological responses due to the involvement of methanol oxidase as a key enzyme in methanol metabolism. Arch. Microbiol. 111: 137–144

    PubMed  Google Scholar 

  • Van Dijken JP & Scheffers WA (1986). Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32: 199–224

    Google Scholar 

  • Van 't Riet K (1983) Mass transfer in fermentation. Trends Biotechnol. 1: 113–119

    Google Scholar 

  • Van Urk H, Voll WSL, Scheffers WA & Van Dijken JP (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl. Environ. Microbiol. 56: 281–287

    Google Scholar 

  • Van Verseveld HW, de Hollander JA, Frankena J, Braster M, Leeuwerik FJ & Stouthamer AH (1986) Modeling of microbial substrate conversion, growth and product formation in a recycling fermentor. Antonie van Leeuwenhoek 52: 325–342

    PubMed  Google Scholar 

  • Veale RA, Giuseppin MLF, Van Eijk HMJ, Sudbery PE & Verrips CT (1992) Development of a strain ofHansenula polymorpha for the efficient expression of guar α-galactosidase. Yeast 8: 361–372

    PubMed  Google Scholar 

  • Veenhuis M, Van Dijken JP & Harder W (1983). The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv. Micr. Physiol. 24: 1–82

    Google Scholar 

  • Verduyn C, Zomerdijk TPL, van Dijken JP & Scheffers WA (1984) Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl. Microbiol. Biotechnol. 19: 181–185

    Google Scholar 

  • Verduyn C (1991) Physiology of yeasts in relation to growth yields. Antonie van Leewenhoek 60: 325–353

    Google Scholar 

  • Verduyn C, Postma E, Scheffers WA & Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeast: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501–517

    PubMed  Google Scholar 

  • Walton EF & Yarranton GT (1989) Negative regulation of gene expression by mating type. In: Walton EF & Yarranton GT (Eds) Molecular and Cell Biology of Yeasts (pp. 43–69) Blackie and Van Nostrand Reinhold

  • Warner JR (1989) Synthesis of ribosomes inSaccharomyces cerevisiae. Microbiol. Rev. 53: 256–271

    PubMed  Google Scholar 

  • Yamada T & Ogrydziak DM (1983) Extracellular acid proteases produced bySaccharomycopsis lipolytica. J. Bacteriol. 154: 23–31

    PubMed  Google Scholar 

  • Yamanè T & Shimizu S (1984) Fed-batch techniques in microbial processes. Adv. Biochem. Eng. Biotechnol. 30: 147–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hensing, M.C.M., Rouwenhorst, R.J., Heijnen, J.J. et al. Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie van Leeuwenhoek 67, 261–279 (1995). https://doi.org/10.1007/BF00873690

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873690

Key words

Navigation