Skip to main content
Log in

Fabrication of Highly Ordered Nanopillar Array Electrode for High-Performance Humidity Sensors

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Humidity sensors are used in various applications to provide suitable environmental conditions. High-performance humidity sensors require highly sensitive active sites to detect water molecules. In this study, a nanopillar-array-based electrode (NAE) was developed, which has a large specific surface area and is applicable to various humidity-sensing materials. The NAE, which was fabricated via photo-lithography and soft lithography, exhibited superior electrochemical capacitance and diffusion behavior compared to flat electrodes. The NAE-based humidity sensor exhibited a high sensitivity and linearity, low hysteresis error, and long-term stability for a duration of 25 days. Moreover, the humidity sensor maintained a consistent impedance signal in a mechanically bent state. Furthermore, the real-time monitoring performance of the humidity sensor was demonstrated by measuring humidity changes during plant transpiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used in this study are available upon request from the corresponding author.

References

  1. Davis, R.E., McGregor, G.R., Enfield, K.B.: Humidity: a review and primer on atmospheric moisture and human health. Environ. Res. 144, 106–116 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Delipinar, T., Shafique, A., Gohar, M.S., Yapici, M.K.: Fabrication and materials integration of flexible humidity sensors for emerging applications. ACS Omega 6, 8744–8753 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arman Kuzubasoglu, B.: Recent studies on the humidity sensor: a mini review. ACS Appl. Electron. Mater. 4, 4797–4807 (2022)

    Article  CAS  Google Scholar 

  4. Jabbar, F., Kim, Y.-S., Lee, S.H.: Biological influence of pulmonary disease conditions induced by particulate matter on microfluidic lung chips. BioChip J. 16, 305–316 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, M., Xue, S., Liu, L., Li, Z., Wang, H., Tan, C., Yang, J., Hu, X., Jiang, X., Cheng, Y., Wang, H., Xing, X., He, S.: A highly stable optical humidity sensor. Sens. Actuators, B Chem. 287, 329–337 (2019)

    Article  CAS  Google Scholar 

  6. He, C., Korposh, S., Correia, R., Liu, L., Hayes-Gill, B.R., Morgan, S.P.: Optical fibre sensor for simultaneous temperature and relative humidity measurement: towards absolute humidity evaluation. Sens. Actuators, B Chem. 344, 130154 (2021)

    Article  CAS  Google Scholar 

  7. Beniwal, A., Ganguly, P., Aliyana, A.K., Khandelwal, G., Dahiya, R.: Screen-printed graphene-carbon ink based disposable humidity sensor with wireless communication. Sens. Actuators, B Chem. 374, 132731 (2023)

    Article  CAS  Google Scholar 

  8. Xu, L., Zhai, H., Chen, X., Liu, Y., Wang, M., Liu, Z., Umar, M., Ji, C., Chen, Z., Jin, L., Liu, Z., Song, Q., Yue, P., Li, Y., Ye, T.T.: Coolmax/graphene-oxide functionalized textile humidity sensor with ultrafast response for human activities monitoring. Chem. Eng. J. 412, 128639 (2021)

    Article  CAS  Google Scholar 

  9. McGhee, J.R., Sagu, J.S., Southee, D.J., Evans, P.S., Wijayantha, K.U.: Printed, fully metal oxide, capacitive humidity sensors using conductive indium tin oxide inks. ACS Appl. Electron. Mater. 2, 3593–3600 (2020)

    Article  CAS  Google Scholar 

  10. Wang, Y., Hou, S., Li, T., Jin, S., Shao, Y., Yang, H., Wu, D., Dai, S., Lu, Y., Chen, S., Huang, J.: Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS Appl. Mater. Interfaces 12, 41896–41904 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J., Wang, N., Xu, D., Tang, L., Sheng, B.: Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly (ether-ether-ketone). Sens. Actuators, B Chem. 375, 132846 (2023)

    Article  CAS  Google Scholar 

  12. Wu, Z., Sun, X., Guo, X., Ding, Y., Ou, Y., Yang, H., Chen, Y., Hu, Y., Kuang, D., Zhao, C., He, Y.: Development of a rGO-BiVO4 heterojunction humidity sensor with boosted performance. ACS Appl. Mater. Interfaces 13, 27188–27199 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. Xu, Z., Zhang, D., Liu, X., Yang, Y., Wang, X., Xue, Q.: Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor. Nano Energy 94, 106881 (2022)

    Article  CAS  Google Scholar 

  14. Lei, D., Zhang, Q., Liu, N., Su, T., Wang, L., Ren, Z., Zhang, Z., Su, J., Gao, Y.: Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Adv. Func. Mater. 32, 2107330 (2022)

    Article  CAS  Google Scholar 

  15. Xu, Z., Zhang, F., Qi, P., Gao, B., Zhang, T.: Study on a humidity sensor of quartz crystal microbalance modified with multi-pore polydopamine. IEEE Electron Device Lett. 43, 611–614 (2022)

    Article  CAS  Google Scholar 

  16. Qi, P., Xu, Z., Zhou, T., Zhang, T., Zhao, H.: Study on a quartz crystal microbalance sensor based on chitosan-functionalized mesoporous silica for humidity detection. J. Colloid Interface Sci. 583, 340–350 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. Le, X., Liu, Y., Peng, L., Pang, J., Xu, Z., Gao, C., Xie, J.: Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension. Microsyst. Nanoeng. 5, 36 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zheng, F., Li, M., Li, C., Zhou, B., Xuan, X., Li, H.: Wireless surface acoustic wave humidity sensor with chitosan/porous cyclodextrin–TiO2 composites for monitoring air and human respiration. Sens. Actuators, B Chem. 379, 133235 (2023)

    Article  CAS  Google Scholar 

  19. Wu, Z., Yang, J., Sun, X., Wu, Y., Wang, L., Meng, G., Kuang, D., Guo, X., Qu, W., Du, B., Liang, C., Fang, X., Tang, X., He, Y.: An excellent impedance-type humidity sensor based on halide perovskite CsPbBr3 nanoparticles for human respiration monitoring. Sens. Actuators, B Chem. 337, 129772 (2021)

    Article  CAS  Google Scholar 

  20. Yu, Y., He, W., Gao, Y., Li, Y.: Multi-channel impedance measurement system for polymer humidity sensors. Measurement 176, 109113 (2021)

    Article  Google Scholar 

  21. Guo, L., Jiang, H., Shao, R., Zhang, Y., Xie, S., Wang, J., Li, X., Jiang, F., Chen, Q., Zhang, T.: Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50, 1667–1673 (2012)

    Article  CAS  Google Scholar 

  22. Wu, J., Sun, Y., Wu, Z., Li, X., Wang, N., Tao, K., Wang, G.P.: Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 11, 4242–4251 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Rauf, S., Vijjapu, M.T., Andrés, M.A., Gascón, I., Roubeau, O., Eddaoudi, M., Salama, K.N.: Highly selective metal–organic framework textile humidity sensor. ACS Appl. Mater. Interfaces 12, 29999–30006 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Velumani, M., Meher, S., Alex, Z.: Composite metal oxide thin film based impedometric humidity sensors. Sens. Actuators, B Chem. 301, 127084 (2019)

    Article  CAS  Google Scholar 

  25. Foucaud, M., Renka, S., Klaser, T., Popović, J., Skoko, Ž., Mošner, P., Koudelka, L., Šantić, A.: Sodium-ion conductivity and humidity-sensing properties of Na2O-MoO3-P2O5 glass–ceramics. Nanomaterials 12, 240 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cho, M.Y., Kim, S., Kim, I.S., Kim, E.S., Wang, Z.J., Kim, N.Y., Kim, S.W., Oh, J.M.: Perovskite-induced ultrasensitive and highly stable humidity sensor systems prepared by aerosol deposition at room temperature. Adv. Func. Mater. 30, 1907449 (2020)

    Article  CAS  Google Scholar 

  27. Hu, Z., Chen, Y., Tan, J., Yan, Z., Weng, Z., Gusain, M., Zhan, Y., Xiao, L.: A hybrid self-growing polymer microtip for ultracompact and fast fiber humidity sensing. Sens. Actuators, B Chem. 346, 130462 (2021)

    Article  CAS  Google Scholar 

  28. Wang, C., Zhang, D., Yue, J., Zhang, X., Wu, Z., Zhang, T., Chen, C., Fei, T.: Optical waveguide sensors for measuring human temperature and humidity with gel polymer electrolytes. ACS Appl. Mater. Interfaces 13, 60384–60392 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. Ni, L., Li, X., Cai, F., Dong, Z., Deng, Y., Jiang, T., Su, Z., Chang, H., Zhang, Z., Luo, Y.: Printable and flexible humidity sensor based on graphene-oxide-supported MoTe2 nanosheets for multifunctional applications. Nanomaterials 13, 1309 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sgibnev, Y., Tananaev, P., Shelaev, A., Yankovskii, G., Baryshev, A.: Relative humidity optical sensor based on self-assembled gold nanoparticles covered with nafion. Photonics 10, 975 (2023)

    Article  CAS  Google Scholar 

  31. Zhang, D., Wang, M., Yang, Z.: Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sens. Actuators, B Chem. 292, 187–195 (2019)

    Article  CAS  Google Scholar 

  32. Wang, Y., Wang, J., Hao, M., Li, B., Zhu, Z., Gou, X., Li, L.: Rapid preparation of a Nafion/Ag NW composite film and its humidity sensing effect. RSC Adv. 10, 27447–27455 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X., Ni, L., Chen, N., Liu, J., Li, W., Xian, Y.: Enhanced sensitivity of humidity sensor using Nafion/graphene oxide quantum dot nanocomposite. Measurement 181, 109566 (2021)

    Article  Google Scholar 

  34. Si, R., Xie, X., Li, T., Zheng, J., Cheng, C., Huang, S., Wang, C.: TiO2/(K, Na) NbO3 nanocomposite for boosting humidity-sensing performances. ACS Sens. 5, 1345–1353 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. Duan, Z., Zhao, Q., Wang, S., Yuan, Z., Zhang, Y., Li, X., Wu, Y., Jiang, Y., Tai, H.: Novel application of attapulgite on high performance and low-cost humidity sensors. Sens. Actuators, B Chem. 305, 127534 (2020)

    Article  CAS  Google Scholar 

  36. Zhu, P., Wei, Y., Kuang, Y., Qian, Y., Liu, Y., Jiang, F., Chen, G.: Porous and conductive cellulose nanofiber/carbon nanotube foam as a humidity sensor with high sensitivity. Carbohyd. Polym. 292, 119684 (2022)

    Article  CAS  Google Scholar 

  37. Park, H.J., Yoon, J.H., Lee, K.G., Choi, B.G.: Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano convergence 6, 1–7 (2019)

    Article  Google Scholar 

  38. Jeong, J.-M., Yang, M., Kim, D.S., Lee, T.J., Choi, B.G.: High performance electrochemical glucose sensor based on three-dimensional MoS2/graphene aerogel. J. Colloid Interface Sci. 506, 379–385 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Dupont, M., Hollenkamp, A.F., Donne, S.W.: Electrochemically active surface area effects on the performance of manganese dioxide for electrochemical capacitor applications. Electrochim. Acta. 104, 140–147 (2013)

    Article  CAS  Google Scholar 

  40. Duan, Z., Jiang, Y., Tai, H.: Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 9, 14963–14980 (2021)

    Article  CAS  Google Scholar 

  41. Bai, Y., Zhang, C.-Z., Chen, B., Sun, H.: Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. Sens. Actuators, B Chem. 287, 258–266 (2019)

    Article  CAS  Google Scholar 

  42. Xie, X.-J., Si, R.-J., Zheng, J., Wei, K., Zheng, X.-Y., Chen, C., Wang, C.-C.: Synthesis of ZnO/NiO hollow spheres and their humidity sensing performance. J. Alloy. Compd. 879, 160487 (2021)

    Article  CAS  Google Scholar 

  43. Kim, S.J., Park, H.J., Yoon, E.S., Choi, B.G.: Preparation of reduced graphene oxide sheets with large surface area and porous structure for high-sensitivity humidity sensor. Chemosensors 11, 276 (2023)

    Article  CAS  Google Scholar 

  44. Li, S., Wan, T., Wei, H., Wang, S., Wang, B., Cheng, B.: Flexible highly-sensitive humidity sensor based on CGO/SMPLAF for wearable human skin humidity detection. Sens. Actuators, B Chem. 362, 131806 (2022)

    Article  CAS  Google Scholar 

  45. Lu, Y., Yang, G., Shen, Y., Yang, H., Xu, K.: Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14, 150 (2022)

    Article  CAS  Google Scholar 

  46. Lee, S.-M., Lee, J.-E., Lee, Y.-K., Yoo, D.-A., Seon, D.-B., Lee, D.-W., Kim, C.-B., Choi, H., Lee, K.-H.: Thermal-corrosion-free electrode-integrated cell chip for promotion of electrically stimulated neurite outgrowth. BioChip J. 16, 99–110 (2022)

    Article  CAS  Google Scholar 

  47. Lazanas, A.C., Prodromidis, M.I.: Electrochemical impedance spectroscopy-a tutorial. ACS Meas. Sci. Au 3, 162–193 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Son, M.H., Park, S.W., Sagong, H.Y., Jung, Y.K.: Recent advances in electrochemical and optical biosensors for cancer biomarker detection. BioChip J. 17, 44–67 (2023)

    Article  CAS  Google Scholar 

  49. Ye, W., Cao, Q., Cheng, X.-F., Yu, C., He, J.-H., Lu, J.-M.: Lead-free Cs2PdBr6 perovskite-based humidity sensor for artificial fruit waxing detection. J. Mater. Chem. A 8, 17675–17682 (2020)

    Article  CAS  Google Scholar 

  50. Zhao, H., Liu, L., Lin, X., Dai, J., Liu, S., Fei, T., Zhang, T.: Proton-conductive gas sensor: a new way to realize highly selective ammonia detection for analysis of exhaled human breath. ACS Sens. 5, 346–352 (2020)

    Article  CAS  PubMed  Google Scholar 

  51. Lan, L., Le, X., Dong, H., Xie, J., Ying, Y., Ping, J.: One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165, 112360 (2020)

    Article  CAS  PubMed  Google Scholar 

  52. Lee, G., Wei, Q., Zhu, Y.: Emerging wearable sensors for plant health monitoring. Adv. Func. Mater. 31, 2106475 (2021)

    Article  CAS  Google Scholar 

  53. Lonnqvist, J., Farrell, C., Schrieke, D., Viklander, M., Blecken, G.T.: Plant water use related to leaf traits and CSR strategies of 10 common European green roof species. Sci. Total. Environ. 890, 164044 (2023)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.T.J., S.J.K., and J. K. contributed equally to this work. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (No. 2021R1A2C1009926), the Nanomedical Devices Devel-opment Project of NNFC in 2023, Nano Open Innovation Lab Cooperation Project of NNFC in 2023, and the Technology Innovation Program (20015577) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Funding

This work was funded by National research foundation of Korea, 2021R1A2C1009926, Bong Gill Choi, Nanomedical Devices Development Project of NNFC, 2023, Kyoung G. Lee, Ministry of Trade, Industry and Energy, 20015577, Bong Gill Choi, and Nano Open Innovation Lab Cooperation Project of NNFC, 2023, Bong Gill Choi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoung G. Lee or Bong Gill Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, S.T., Kim, S.J., Kim, J. et al. Fabrication of Highly Ordered Nanopillar Array Electrode for High-Performance Humidity Sensors. BioChip J (2024). https://doi.org/10.1007/s13206-024-00150-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13206-024-00150-6

Keywords

Navigation