Skip to main content
Log in

Computational identification of seed-specific transcription factors involved in anthocyanin production in black rice

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

To better understand the functional characterization of anthocyanin gene expression in black rice, we performed a detailed computational examination. The experiment was performed using the newly designed 135K Oryza sativa microarray to assess gene expression at three time points after the heading stage in Ds insertion lines. Transcription factors related to anthocyanin pigmentation biosynthesis were clustered. A total of 8,517 genes exhibited greater than 2.5-fold up- or downregulation in each comparison between three rice groups and three seed developmental stages. The resultant 82 transcription factor genes found to be associated with anthocyanin were classified into 12 groups. In addition, 12 unknown and hypothetical genes were identified from comparisons between the white cultivar and two black Ds insertion mutants tested. We identified 12 unknown and hypothetical genes involved in anthocyanin biosynthesis. These genes likely play either a regulatory role in the anthocyanin production process or are related to anthocyanin metabolism during flavonoid biosynthesis. While these genes require further characterization and validation, the results here underline the potential use of the newly designed microarray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, M.W., Guo, B.J. & Peng, Z.M. Genetic effects on grain characteristics of indica black rice and their uses on indirect selections for some mineral element contents in grains. Genet. Resour. Crop 52, 1121–1128 (2005).

    Article  CAS  Google Scholar 

  2. Ryu, S.N., Park, S.Z. & Ho, C.T. High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. J. Food Drug Anal. 6, 729–736 (1998).

    CAS  Google Scholar 

  3. Robert, Y. & Naofumi, M. Color enhancing effect of carboxylic acids on anthocyanins. Food Chemistry 105, 421–427 (2007).

    Article  Google Scholar 

  4. Quattrocchio, F., Wing, J.F., Leppen, H.T.C., Mol, J.N.M. & Koes, R.E. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5, 1497–1512 (1993).

    Article  CAS  Google Scholar 

  5. Takahashi, M. Gene analysis and its related problems. J. Fac. Agr. Hokkaido University 61, 91–142 (1982).

    Google Scholar 

  6. Hu, J., Reddy, V.S. & Wessler, S.R. The rice R gene family, two distinct subfamilies inverted repeat transposable elements. Plant Molecular Biology 42, 667–678 (2000).

    Article  CAS  Google Scholar 

  7. Reddy, V.S., Scheffler, B.E., Wienand, U., Wessler, S.R. & Reddy, A.R. Cloning and characterization of the rice homologue of the maize C1 anthocyanin regulatory gene. Plant Mol. Biology 36, 497–498 (1998).

    Article  Google Scholar 

  8. Holton, T.A. & Cornish, E.C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071–1083 (1995).

    Article  CAS  Google Scholar 

  9. Clifford, M.N. Anthocyanins, Nature, occurrence and dietary burden. Journal of Science Food Agriculture 80, 1063–1072 (2000).

    Article  CAS  Google Scholar 

  10. Oki, T. et al. Polymeric procyanidins as radical-scavenging componenets in red-hulled rice. J. Agric. Food Chemistry 50, 7524–7529 (2002).

    Article  CAS  Google Scholar 

  11. Dessimoz, C., Boeckmann, B., Roth, A.C. & Gonnet, G.H. Detecting non-orthology in the COGs database and other approaches grouping orthologs using genome-specific best hits. Nucleic Acids Res. 34, 3309–3316 (2006).

    Article  CAS  Google Scholar 

  12. Remm, M., Storm, C. & Sonnhammer, E. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biology 314, 1041–1052 (2001).

    Article  CAS  Google Scholar 

  13. Ashburner, M. et al. Gene ontology, tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  14. Ptashne, M. How eukaryotic transcriptional activators work. Nature 335, 683–689 (1988).

    Article  CAS  Google Scholar 

  15. Li, J. et al. A subgroup of MYB transcription factor genes undergoes conserved alternative splicing in Arabidopsis and rice. Journal Experimental Botany 57, 1263–1273 (2006).

    Article  CAS  Google Scholar 

  16. Baudry, A. et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39, 366–380 (2004).

    Article  CAS  Google Scholar 

  17. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R. & Weisshaar, B. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 57, 155–171 (2005).

    Article  CAS  Google Scholar 

  18. Reddy, A.M. et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab Eng. 9, 95–111 (2007).

    Article  CAS  Google Scholar 

  19. Hui, S.L. & David, K. Text-based over-representation analysis of microarray gene lists with annotation bias. Nucleic Acids Res. 37, e79 (2009).

    Article  Google Scholar 

  20. Qin, H., Feng, T., Harding, S.A., Tsai, C.J. & Zhang, S. An efficient method to identify differentially expressed genes in microarray experiments. Bioinformatics 24, 1583–1589 (2008).

    Article  CAS  Google Scholar 

  21. Park, H.W. et al. Gene expression pattern analysis of PAHs and VOCs in rat blood using HazChem rat array. BioChip J. 3, 333–338 (2009).

    Google Scholar 

  22. Kim, C.K. et al. Genetic analysis of seed-specific gene expression for pigmentation in colored rice. BioChip J. 3, 125–129 (2009).

    Google Scholar 

  23. Kim, C.K. et al. Genetic analysis of gene expression for pigmentation in Chinese cabbage (Brassica rapa). BioChip J. 4, 123–128 (2010).

    Article  CAS  Google Scholar 

  24. Zhu, Q.H. et al. Transposon insertional mutants, a resource for rice functional genomics. In, Upadhyaya NM(ed) Rice functional genomics challenges progress and prospects. Springer Press 224–262 (2007).

  25. Kolesnik, T. et al. Establishing an efficient Ac/Ds tagging system in rice, large-scale analysis of Ds flanking sequences. Plant J. 37, 301–314 (2004).

    CAS  Google Scholar 

  26. Park, D.S. et al. Genetic variation through Dissociation (Ds) insertional mutagenesis system for rice in Korea, progress and current status. Molecular Breeding 24, 1–15 (2009).

    Article  CAS  Google Scholar 

  27. Xia, M., Ling, W.H., Ma, J., Kitts, D.D. & Zawistowski, J. Supplementation of diets with black rice pigment fraction attenuates atherosclerotic plaque formation in apolipoprotein E deficient mice. Journal Nutr. 133, 744–751 (2003).

    CAS  Google Scholar 

  28. Xia, X. et al. An anthocyanin-rich extract from black rice enhances atherosclerotic plaque stabilization in apolipoprotein E-deficient mice. Journal Nutr. 136, 2220–2225 (2006).

    CAS  Google Scholar 

  29. Guo, H. et al. Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum Nutr. 62, 1–6 (2007).

    Article  CAS  Google Scholar 

  30. Wu, X. & Prior, R.L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States, fruits and berries. Journal of Agricultural and Food Chemistry 53, 2589–2599 (2005).

    Article  CAS  Google Scholar 

  31. Zhang, Z., Kou, X., Fugal, K. & McLaughlin, J. Comparison of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts. Journal of Agricultural and Food Chemistry 52, 688–691 (2004).

    Article  CAS  Google Scholar 

  32. NCBI/COGs. [http://www.ncbi.nlm.nih.gov/COG/]

  33. Zeeberg, B.R. et al. GoMiner, a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4, R28 (2003).

    Article  Google Scholar 

  34. IRGSP. [http://rgp.dna.affrc.go.jp/E/IRGSP/]

  35. Martin, C. & Paz-Ares, J. MYB transcription factors in plants. Trends Genet. 13, 67–73 (1997).

    Article  CAS  Google Scholar 

  36. Yujie, F., Kabin, X., Xin, H., Honghong, H. & Lizhong, X. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol. Genet Genomics 283, 157–169 (2010).

    Article  Google Scholar 

  37. Reddy, V.S., Scheffler, B.E., Wienand, U., Wessler, S.R. & Reddy, A.R. Cloning and characterization of the rice homologue of the maize C1 anthocyanin regulatory gene. Plant Mol. Biology 36, 497–498 (1998).

    Article  Google Scholar 

  38. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A. & Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2393 (2000).

    Article  CAS  Google Scholar 

  39. Sheng, T., Joost, K., Maarten, K. & Sjef, S. Sucrosespecific induction of anthocyanin biosynthesis in arabidopsis requires the MYB75/PAP1 Gene1. Plant Physiology 139, 1840–1852 (2005).

    Article  Google Scholar 

  40. Johnson, C.S., Kolevski, B. & Smyth, D.R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14, 1359–1375 (2002).

    Article  CAS  Google Scholar 

  41. Morishita, T. et al. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol. 50, 2210–2222 (2009).

    Article  CAS  Google Scholar 

  42. Jeon, J.S. et al. Leafy hull sterile1 (lhs1) is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12, 871–884 (2000).

    Article  CAS  Google Scholar 

  43. Antonio, G., Mingzhe, Z., John, M.L. & Alan, M.L. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant Journal 53, 814–827 (2008).

    Article  Google Scholar 

  44. Park, S.H. et al. Analysis of gene-trap Ds rice populations in Korea. Plant Mol Biol. 65, 373–384 (2007).

    Article  CAS  Google Scholar 

  45. RAP2 (Rice Annotation Project version 2). [http://rapdb.dna.affrc.go.jp/]

  46. Workman, C. et al. A new non-linear normalization method for reducing variability in dna microarray experiments. Genome Biol. 3, 0048.1–0048.16 (2002).

    Article  Google Scholar 

  47. Sadlier, D.M. et al. Sequential extracellular matrixfocused and baited-global cluster analysis of serial transcriptomic profiles identifies candidate modulators of renal tubulointerstitial fibrosis in murine adriamycininduced nephropathy. J. Biol Chem. 279, 29670–29680 (2004).

    Article  CAS  Google Scholar 

  48. Irizarry, R.A. et al. Summaries of Affymetrix Gene-Chip probe level data. Nucleic Acids Res. 31, e15 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SooChul Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C., Kikuchi, S., Kim, Y. et al. Computational identification of seed-specific transcription factors involved in anthocyanin production in black rice. BioChip J 4, 247–255 (2010). https://doi.org/10.1007/s13206-010-4313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-010-4313-7

Keywords

Navigation