Skip to main content
Log in

Genetic variation through Dissociation (Ds) insertional mutagenesis system for rice in Korea: progress and current status

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A gene detection strategy using two-component Ac/Ds construct, with the mobile Ds transposon, has been developed to better understand gene functions in crops. Currently, 115,000 Ds insertion lines have been generated through the Ac/Ds gene trap system in Korea using japonica rice Dongjin as donor. Four hundred and thirty-seven mutants from 12,162 Ds-tagged lines were catalogued, including physiological and agronomic traits. Different traits were identified with distinct characteristics in terms of tillers, panicles, leaves, flowers, seed, chlorophyll content, and height. Culm and panicle length, number of panicles, and days to flowering of the Dongjin Ds population revealed high standard deviations compared with the donor cultivar. An evaluation of the Ds distribution on the chromosome revealed that 74.5% of the Ds were reinserted into gene-rich regions, making this Ac/Ds-mediated gene trap system useful in helping to gain an understanding of the function of genes and thus improve the gene-tagging system in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arase S, Zhao CM, Akimitsu K, Yamamoto M, Ichi M (2000) A recessive lesion mimic mutant of rice with elevated resistance to fungal pathogens. J Gen Plant Pathol 66:109–116. doi:10.1007/PL00012930

    Article  Google Scholar 

  • Brock RD (1976) Prospects and perspectives in mutation breeding. Basic Life Sci 8:117–132

    PubMed  CAS  Google Scholar 

  • Chen DH, Ronald PC (1999) A rapid DNA mini-preparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57. doi:10.1023/A:1007585532036

    Article  CAS  Google Scholar 

  • Chin HG, Choe MS, Lee SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han CD (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–624. doi:10.1046/j.1365-313X.1999.00561.x

    Article  PubMed  CAS  Google Scholar 

  • Dooner HK, Harding S, Ralston M, Ralston E (1994) Distribution of unlinked receptor sites for transposed Ac elements from the bz-m2 (Ac) allele in maize. Genetics 136:261–279

    PubMed  CAS  Google Scholar 

  • Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605–613. doi:10.1046/j.1365-313X.1999.00549.x

    Article  PubMed  CAS  Google Scholar 

  • Godbole R, Takahashi H, Hertel R (2008) The lazy mutation in rice affects a step between statoliths and gravity-induced lateral auxin transport. Plant Biol 1(4):379–381. doi:10.1111/j.1438-8677.1999.tb00719.x

    Article  Google Scholar 

  • Guiderdoni E, An G, Yu SM, Hsing Y, Wu C (2007) T-DNA insertion mutants as a resource for rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics challenges progress and prospects. Springer, New York, pp 181–221

    Chapter  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S et al (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaf and stem. Plant J 32:495–508. doi:10.1046/j.1365-313X.2002.01438.x

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi dwarf gene, Tan Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533–547. doi:10.1023/B:PLAN.0000038261.21060.47

    Article  PubMed  CAS  Google Scholar 

  • Jain SM (2002) A review of induction of mutations in fruits of tropical and subtropical regions. Acta Hortic 575:295–302

    Google Scholar 

  • Jain SM (2005) Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell 82:113–123

    CAS  Google Scholar 

  • Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee HS, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) Leafy hull sterile 1 (lhs1) is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12(6):871–884

    Article  PubMed  CAS  Google Scholar 

  • Jiang SY, Ramachandran S (2008) Ds insertion lines valuable for rice breeding. Available via http://www.isb.vt.edu/articles/mar0803.htm. Accessed 15 Nov 2008

  • Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K (1999) The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci USA 96:10922–10926. doi:10.1073/pnas.96.19.10922

    Article  PubMed  CAS  Google Scholar 

  • Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, Park JY, Lee EJ, Kim MJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi GH, Nam MH, Cha YS, Yun DW, Eun MY, Han CD (2004) Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J 39(2):252–263. doi:10.1111/j.1365-313X.2004.02116.x

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Lee MC, Ahn BO, Yun DW, Yoon UH, Suh SC, Eun MY, Hahn JH (2008) KRDD: Korean rice Ds-tagging lines database for rice (Oryza sativa L. cv Dongjin). Genomics Inform 6(2):64–67

    Google Scholar 

  • Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314

    PubMed  CAS  Google Scholar 

  • Krishnan A, Guiderdoni E, An GH, Hsing YI, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170. doi:10.1104/pp.108.128918

    Article  PubMed  CAS  Google Scholar 

  • Kurata N, Miyoshi K, Nonomura KI, Yamazaki Y, Ito Y (2005) Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol 46:48–62. doi:10.1093/pcp/pci506

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka J, Shimamoto K (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol 43:130–135. doi:10.1093/pcp/pcf010

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M, Li J (2003) BRITTLE CULM1, which encodes a COBRA-Like Protein, affects the mechanical properties of rice plants. Plant Cell 15:2020–2031. doi:10.1105/tpc.011775

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wang Y, Quian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1 controls rice shoot gravitrophism through regulating polar auxin transport. Cell Res 17:402–410

    PubMed  CAS  Google Scholar 

  • Martienssen RA (1998) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci USA 95:2021–2026. doi:10.1073/pnas.95.5.2021

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid synthesis. Plant Physiol 130:1152–1161. doi:10.1104/pp.007179

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718. doi:10.1242/dev.00294

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Jun NS, Kim CM, Oh TY, Huang J, Xuan YH, Park SJ, Je BI, Piao HL, Park SH, Cha YS, Ahn BO, Ji HS, Lee MC, Suh SC, Nam MH, Eun MY, Yi GH, Yun DW, Han CD (2007) Analysis of gene-trap Ds rice populations in Korea. Plant Mol Biol 65:373–384. doi:10.1007/s11103-007-9192-5

    Article  PubMed  CAS  Google Scholar 

  • Pereira A, Aarts MGM (1998) Transposon tagging with the En-I system. In: Martinez-Zapater J, Salinas J (eds) Arabidopsis Protocols. Humana Press, Totowa, NJ pp. 329–338. RDA 1995 Standard field crop evaluation method. pp. 490–510

  • Rural Development Administration (1995) Standard methods for agricultural experiment. RDA: 603

  • Sanchez AC, Khush GS (2000) Chromosomal localization of five mutant genes in rice, Oryza sativa, using primary trisomics. Plant Breed 119(1):84–86. doi:10.1046/j.1439-0523.2000.00424.x

    Article  CAS  Google Scholar 

  • Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K (2004) The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45:985–996. doi:10.1093/pcp/pch111

    Article  PubMed  CAS  Google Scholar 

  • Suzaki A, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY (2004) The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rice repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131:5649–5657. doi:10.1242/dev.01441

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Kawasaki T, Henmi K, Shil K, Kodama O, Satoh H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17:535–545. doi:10.1046/j.1365-313X.1999.00405.x

    Article  PubMed  CAS  Google Scholar 

  • Takamure I, Kinoshita T (1992) Modification of glume characters due to genic interactions and environmental conditions. Rice Genet Newsl 9:85–88

    Google Scholar 

  • Toriba T, Harada T, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY (2007) Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genomics 277(5):457–468. doi:10.1007/s00438-006-0202-0

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Li X, Yuan W, Chen GX, Zhou DX, Wang SP, Zhang QF (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418–427. doi:10.1046/j.1365-313X.2003.01808.x

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hiranoa HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509. doi:10.1105/tpc.018044

    Article  PubMed  CAS  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl 7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535. doi:10.1073/pnas.112209199

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara T, Iino M (2007) Identification of gravitrophism-related rice gene Lazy1 and elucidation of LAZY1-dependent and independent gravity signaling pathways. Plant Cell Physiol 48(5):678–688. doi:10.1093/pcp/pcm042

    Article  PubMed  CAS  Google Scholar 

  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808. doi:10.1105/tpc.104.025171

    Article  PubMed  CAS  Google Scholar 

  • Zhu QH, Eun MY, Han CD, Kumar CS, Pereira A, Ramachandran S, Sundaresan V, Eamens AL, Upadhyaya NM, Wu R (2007) Transposon insertional mutants: a resource for rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics challenges progress and prospects. Springer, New York, pp 224–262

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the twenty-first Century Frontier Program (CG3312) of the Crop Functional Genomics Center and the Biogreen 21 program, Rural Development Administration (RDA), Republic of Korea. We thank the reviewers for the constructive comments and Ms. Tess Rola of the Communication and Publication Services Division, IRRI, for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gihwan Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, DS., Park, SK., Han, SI. et al. Genetic variation through Dissociation (Ds) insertional mutagenesis system for rice in Korea: progress and current status. Mol Breeding 24, 1–15 (2009). https://doi.org/10.1007/s11032-009-9300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9300-0

Keywords

Navigation