Skip to main content

Advertisement

Log in

Natural flavonoids as potential therapeutics in the management of Alzheimer’s disease: a review

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound’s therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Rémésy C, Chap H, Payrastre B (1997) Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 53(11):1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Ahmed RM, Ke YD, Vucic S, Ittner LM, Seeley W, Hodges JR, Piguet O, Halliday G, Kiernan MC (2018) Physiological changes in neurodegeneration—mechanistic insights and clinical utility. Nat Rev Neurol 14(5):259–271

    Article  CAS  PubMed  Google Scholar 

  • Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE (2020) MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int J Mol Sci 21(12):4471

    Article  PubMed  PubMed Central  Google Scholar 

  • Alharbi MH, Lamport DJ, Dodd GF, Saunders C, Harkness L, Butler LT, Spencer JP (2016) Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur J Nutr 55(6):2021–2029

    Article  CAS  PubMed  Google Scholar 

  • Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO (2018) Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol 55(7):6076–6093

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani S, Ezzat W, Elshaer RE, Abd El-Lateef AS, Mohammad HMF, Elkazaz AY, Toraih E, Zaitone SA (2018) Standarized Tribulus terrestris extract protects against rotenone-induced oxidative damage and nigral dopamine neuronal loss in mice. J Physiol Pharmacol 69(6):979

    CAS  Google Scholar 

  • Amsterdam JD (2003) A double-blind, placebo-controlled trial of the safety and efficacy of selegiline transdermal system without dietary restrictions in patients with major depressive disorder. J Clin Psychiatry 64(2):208–214

    Article  CAS  PubMed  Google Scholar 

  • An J, Chen B, Tian D, Guo Y, Yan Y, Yang H (2022) Regulation of neurogenesis and neuronal differentiation by natural compounds. Curr Stem Cell Res Ther 17(8):756–771

    Article  CAS  PubMed  Google Scholar 

  • Andrade S, Nunes D, Dabur M, Ramalho MJ, Pereira MC, Loureiro JA (2023) Therapeutic potential of natural compounds in neurodegenerative diseases: insights from clinical trials. Pharmaceutics 15(1):212

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC (2019) Natural compounds for Alzheimer’s disease therapy: a systematic review of preclinical and clinical studies. Int J Mol Sci 20(9):2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeloni C, Vauzour D (2019) Natural products and neuroprotection. Int J Mol Sci 20(22):5570

    Article  PubMed  PubMed Central  Google Scholar 

  • Angeloni C, Giusti L, Hrelia S (2019) New neuroprotective perspectives in fighting oxidative stress and improving cellular energy metabolism by oleocanthal. Neural Regen Res 14(7):1217–1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Arias-Sánchez RA, Torner L, Fenton Navarro B (2023) Polyphenols and neurodegenerative diseases: potential effects and mechanisms of neuroprotection. Molecules 28(14):5415

    Article  PubMed  PubMed Central  Google Scholar 

  • Ataka S, Tanaka M, Nozaki S, Mizuma H, Mizuno K, Tahara T, Sugino T, Shirai T, Kajimoto Y, Kuratsune H, Kajimoto O, Watanabe Y (2007) Effects of Applephenon and ascorbic acid on physical fatigue. Nutrition 23(5):419–423

    Article  CAS  PubMed  Google Scholar 

  • Azam S, Jakaria M, Kim I-S, Kim J, Haque ME, Choi D-K (2019) Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol. https://doi.org/10.3389/fimmu.2019.01000

    Article  PubMed  PubMed Central  Google Scholar 

  • Baba Y, Inagaki S, Nakagawa S, Kaneko T, Kobayashi M, Takihara T (2020) Effect of daily intake of green tea catechins on cognitive function in middle-aged and older subjects: a randomized, placebo-controlled study. Molecules 25(18):4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Bian Z, Zhang M (2023) Targeting the Nrf2 signaling pathway using phytochemical ingredients: a novel therapeutic road map to combat neurodegenerative diseases. Phytomedicine 109:154582

    Article  CAS  PubMed  Google Scholar 

  • Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D (2019) Phytochemicals and cognitive health: are flavonoids doing the trick? Biomed Pharmacother 109:1488–1497

    Article  CAS  PubMed  Google Scholar 

  • Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76(6):1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Boldi AM (2004) Libraries from natural product-like scaffolds. Curr Opin Chem Biol 8(3):281–286

    Article  CAS  PubMed  Google Scholar 

  • Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam AR, Fulford J (2017) Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab 42(7):773–779

    Article  CAS  PubMed  Google Scholar 

  • Brickman AM, Khan UA, Provenzano FA, Yeung LK, Suzuki W, Schroeter H, Wall M, Sloan RP, Small SA (2014) Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci 17(12):1798–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bui TT, Nguyen TH (2017) Natural product for the treatment of Alzheimer’s disease. J Basic Clin Physiol Pharmacol 28(5):413–423

    Article  CAS  PubMed  Google Scholar 

  • Buijsse B, Weikert C, Drogan D, Bergmann M, Boeing H (2010) Chocolate consumption in relation to blood pressure and risk of cardiovascular disease in German adults. Eur Heart J 31(13):1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25(3):475–516

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27(7):1451–1474

    Article  CAS  PubMed  Google Scholar 

  • Calis Z, Mogulkoc R, Baltaci AK (2019) The roles of flavonoles/flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev Med Chem 20:1475

    Article  Google Scholar 

  • Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA, Barenys M, Auladell C, Folch J, Souto EB, Camins A, Turowski P, García ML (2019) Dual-drug loaded nanoparticles of epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release 301:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona V, Martín-Aragón S, Goldberg J, Schubert D, Bermejo-Bescós P (2020) Several targets involved in Alzheimer’s disease amyloidogenesis are affected by morin and isoquercitrin. Nutr Neurosci 23(8):575–590

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Basu S (2017) Multi-functional activities of citrus flavonoid narirutin in Alzheimer’s disease therapeutics: an integrated screening approach and in vitro validation. Int J Biol Macromol 103:733–743

    Article  CAS  PubMed  Google Scholar 

  • Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16(4):357–363

    Article  CAS  PubMed  Google Scholar 

  • Costa SL, Silva VD, Dos Santos Souza C, Santos CC, Paris I, Muñoz P, Segura-Aguilar J (2016) Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox Res 30(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • da Rosa MM, de Amorim LC, de Alves JVO, de Aguiar IFS, de Oliveira FGS, da Silva MV, dos Santos MTC (2022) The promising role of natural products in Alzheimer’s disease. Brain Disorders 7:100049

    Article  Google Scholar 

  • Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame project. Am J Med 119(9):751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Araújo FM, Frota AF, de Jesus LB, Cuenca-Bermejo L, Ferreira KMS, Santos CC, Soares EN, Souza JT, Sanches FS, Costa ACS, Farias AA, de Costa MFD, Munoz P, Menezes-Filho JA, Segura-Aguilar J, Costa SL, Herrero MT, Silva VDA (2023) Protective effects of flavonoid rutin against aminochrome neurotoxicity. Neurotox Res 41(3):224–241

    PubMed  Google Scholar 

  • De S, Wirthensohn DC, Flagmeier P, Hughes C, Aprile FA, Ruggeri FS, Whiten DR, Emin D, Xia Z, Varela JA, Sormanni P, Kundel F, Knowles TPJ, Dobson CM, Bryant C, Vendruscolo M, Klenerman D (2019) Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat Commun 10(1):1541

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • de la Rubia Ortí JE, García-Pardo MP, Drehmer E, Sancho Cantus D, Julián Rochina M, Aguilar MA, Hu Yang I (2018) Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched mediterranean diet: a pilot study. J Alzheimers Dis 65(2):577–587

    Article  PubMed  Google Scholar 

  • Dey A, Bhattacharya R, Mukherjee A, Pandey DK (2017) Natural products against Alzheimer’s disease: pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 35(2):178–216

    Article  CAS  PubMed  Google Scholar 

  • Dhandapani KM, Brann DW (2002) Protective effects of estrogen and selective estrogen receptor modulators in the brain. Biol Reprod 67(5):1379–1385

    Article  CAS  PubMed  Google Scholar 

  • Di Paolo M, Papi L, Gori F, Turillazzi E (2019) Natural products in neurodegenerative diseases: a great promise but an ethical challenge. Int J Mol Sci 20(20):5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias MC, Pinto D, Silva AMS (2021) Plant flavonoids: chemical characteristics and biological activity. Molecules 26(17):5377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinges DF (2006) Cocoa flavanols, cerebral blood flow, cognition, and health: going forward. J Cardiovasc Pharmacol 47(Suppl 2):S221-223

    CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Kostov RV, Kazantsev AG (2018) The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J 285(19):3576–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy R, Wiseman H, File SE (2003) Improved cognitive function in postmenopausal women after 12 weeks of consumption of a soya extract containing isoflavones. Pharmacol Biochem Behav 75(3):721–729

    Article  CAS  PubMed  Google Scholar 

  • Edeas M (2011) Strategies to target mitochondria and oxidative stress by antioxidants: key points and perspectives. Pharm Res 28(11):2771–2779

    Article  CAS  PubMed  Google Scholar 

  • Elisha IL, Dzoyem JP, McGaw LJ, Botha FS, Eloff JN (2016) The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. BMC Complement Altern Med 16(1):307

    Article  PubMed  PubMed Central  Google Scholar 

  • Elufioye TO, Berida TI, Habtemariam S (2017) Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evid Based Complement Alternat Med 2017:3574012

    Article  PubMed  PubMed Central  Google Scholar 

  • Espargaró A, Ginex T, Vadell MD, Busquets MA, Estelrich J, Muñoz-Torrero D, Luque FJ, Sabate R (2017) Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-Alzheimer drugs. J Nat Prod 80(2):278–289

    Article  PubMed  Google Scholar 

  • Farzaei MH, Rahimi R, Nikfar S, Abdollahi M (2018) Effect of resveratrol on cognitive and memory performance and mood: a meta-analysis of 225 patients. Pharmacol Res 128:338–344

    Article  PubMed  Google Scholar 

  • Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43(1):218–227

    Article  CAS  PubMed  Google Scholar 

  • Fernandez SP, Mewett KN, Hanrahan JR, Chebib M, Johnston GAR (2008) Flavan-3-ol derivatives are positive modulators of GABAA receptors with higher efficacy for the α2 subtype and anxiolytic action in mice. Neuropharmacology 55(5):900–907

    Article  CAS  PubMed  Google Scholar 

  • Fernandez JW, Rezai-Zadeh K, Obregon D, Tan J (2010) EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP. FEBS Lett 584(19):4259–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • File SE, Hartley DE, Elsabagh S, Duffy R, Wiseman H (2005) Cognitive improvement after 6 weeks of soy supplements in postmenopausal women is limited to frontal lobe function. Menopause 12(2):193–201

    Article  PubMed  Google Scholar 

  • Fisher ND, Sorond FA, Hollenberg NK (2006) Cocoa flavanols and brain perfusion. J Cardiovasc Pharmacol 47(Suppl 2):S210-214

    Article  CAS  PubMed  Google Scholar 

  • Flanagan E, Müller M, Hornberger M, Vauzour D (2018) Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Curr Nutr Rep 7(2):49–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraga CG, Litterio MC, Prince PD, Calabró V, Piotrkowski B, Galleano M (2011) Cocoa flavanols: effects on vascular nitric oxide and blood pressure. J Clin Biochem Nutr 48(1):63–67

    Article  CAS  PubMed  Google Scholar 

  • Francis ST, Head K, Morris PG, Macdonald IA (2006) The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol 47(Suppl 2):S215-220

    Article  CAS  PubMed  Google Scholar 

  • Galm U, Shen B (2007) Natural product drug discovery: the times have never been better. Chem Biol 14(10):1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Gan N, Wu Y-C, Brunet M, Garrido C, Chung F-L, Dai C, Mi L (2010) Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem 285(46):35528–35536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12(3):306–317

    Article  CAS  PubMed  Google Scholar 

  • Giau VV, Senanarong V, Bagyinszky E, An SSA, Kim S (2019) Analysis of 50 neurodegenerative genes in clinically diagnosed early-onset Alzheimer’s disease. Int J Mol Sci 20(6):1514

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2006) Anti-inflammatory drugs in the treatment of neurodegenerative diseases: current state. Curr Pharm Des 12(27):3509–3519

    Article  CAS  PubMed  Google Scholar 

  • Gold BG, Villafranca JE (2003) Neuroimmunophilin ligands: the development of novel neuroregenerative/ neuroprotective compounds. Curr Top Med Chem 3(12):1368–1375

    Article  CAS  PubMed  Google Scholar 

  • Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyarzu P, Malin DH, Lau FC, Taglialatela G, Moon WD, Jennings R, Moy E, Moy D, Lippold S, Shukitt-Hale B, Joseph JA (2004) Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci 7(2):75–83

    Article  PubMed  Google Scholar 

  • Grassi D, Desideri G, Necozione S, Lippi C, Casale R, Properzi G, Blumberg JB, Ferri C (2008) Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 138(9):1671–1676

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Yang L, Wan C-X, Xia Y-Z, Zhang C, Chen M-H, Wang Z-D, Li Z-R, Li X-M, Geng Y-D, Kong L-Y (2016) Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine 23(13):1629–1637

    Article  CAS  PubMed  Google Scholar 

  • Ha SK, Lee P, Park JA, Oh HR, Lee SY, Park JH, Lee EH, Ryu JH, Lee KR, Kim SY (2008) Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem Int 52(4–5):878–886

    Article  CAS  PubMed  Google Scholar 

  • Habtemariam S (2019) Natural products in Alzheimer’s disease therapy: would old therapeutic approaches fix the broken promise of modern medicines? Molecules 24(8):1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad Y, Adam V, Heger Z (2017) Trk receptors and neurotrophin cross-interactions: new perspectives toward manipulating therapeutic side-effects. Front Mol Neurosci 10:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddadi R, Nayebi AM, Eyvari Brooshghalan S (2018) Silymarin prevents apoptosis through inhibiting the Bax/caspase-3 expression and suppresses toll like receptor-4 pathway in the SNc of 6-OHDA intoxicated rats. Biomed Pharmacother 104:127–136

    Article  CAS  PubMed  Google Scholar 

  • Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007:45673

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanrahan JR, Chebib M, Johnston GA (2011) Flavonoid modulation of GABA(A) receptors. Br J Pharmacol 163(2):234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  CAS  PubMed  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96(2–3):67–202

    Article  CAS  PubMed  Google Scholar 

  • Heinrich M, Lee Teoh H (2004) Galanthamine from snowdrop–the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92(2–3):147–162

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Gozdz A (2004) Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 271(11):2050–2055

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Lambert JD, Lee SH, Sinko PJ, Yang CS (2003) Involvement of multidrug resistance-associated proteins in regulating cellular levels of (−)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun 310(1):222–227

    Article  CAS  PubMed  Google Scholar 

  • Hsu YY, Chen CS, Wu SN, Jong YJ, Lo YC (2012) Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur J Pharm Sci 46(5):415–425

    Article  CAS  PubMed  Google Scholar 

  • Hsu YY, Tseng YT, Lo YC (2013) Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol Appl Pharmacol 272(3):787–796

    Article  CAS  PubMed  Google Scholar 

  • Huang TJ, Verkhratsky A, Fernyhough P (2005) Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons. Mol Cell Neurosci 28(1):42–54

    Article  CAS  PubMed  Google Scholar 

  • Huang S-M, Wu C-H, Yen G-C (2006) Effects of flavonoids on the expression of the pro-inflammatory response in human monocytes induced by ligation of the receptor for AGEs. Mol Nutr Food Res 50(12):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Hirsch EC (2003) Neuroinflammatory processes in Parkinson’s disease. Ann Neurol 53(Suppl 3):S49-58

    Article  CAS  PubMed  Google Scholar 

  • Hussain G, Zhang L, Rasul A, Anwar H, Sohail MU, Razzaq A, Aziz N, Shabbir A, Ali M, Sun T (2018) Role of plant-derived flavonoids and their mechanism in attenuation of alzheimer’s and Parkinson’s diseases: an update of recent data. Molecules 23(4):814

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30(4):433–446

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Moro S, Manthey JA, West PL, Ji X-D (2002) Interactions of flavones and other phytochemicals with adenosine receptors. Adv Exp Med Biol 505:163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107(6):2687–2692

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Jaouad B (2010) Polyphenols: a potential new strategy for the prevention and treatment of anxiety and depression. Curr Nutr Food Sci 6(1):13–18

    Article  Google Scholar 

  • Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Liu M-Y, Zhang D-F, Zhong X, Du K, Qian P, Yao W-F, Gao H, Wei M-J (2019) Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther 25(5):575–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung W, Yu O, Lau S-MC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208–212

    Article  CAS  PubMed  Google Scholar 

  • Katavic PL, Lamb K, Navarro H, Prisinzano TE (2007) Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships. J Nat Prod 70(8):1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katchborian-Neto A, Santos WT, Nicácio KJ, Corrêa JOA, Murgu M, Martins TMM, Gomes DA, Goes AM, Soares MG, Dias DF, Chagas-Paula DA, Paula ACC (2020) Neuroprotective potential of Ayahuasca and untargeted metabolomics analyses: applicability to Parkinson’s disease. J Ethnopharmacol 255:112743

    Article  CAS  PubMed  Google Scholar 

  • Kean RJ, Lamport DJ, Dodd GF, Freeman JE, Williams CM, Ellis JA, Butler LT, Spencer JP (2015) Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: an 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am J Clin Nutr 101(3):506–514

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112(6):1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Kim HG, Ju MS, Ha SK, Lee H, Lee H, Kim SY, Oh MS (2012) Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol Pharm Bull 35(8):1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Kim KW, Park S, Jo H, Cho SH, Kim SJ, Kim Y, Jang H, Na DL, Seo SW, Kim HJ (2020) Identifying a subtype of Alzheimer’s disease characterised by predominant right focal cortical atrophy. Sci Rep 10(1):7256

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kovacs GG (2017) Concepts and classification of neurodegenerative diseases. Handb Clin Neurol 145:301–307

    Article  PubMed  Google Scholar 

  • Kritz-Silverstein D, Von Mühlen D, Barrett-Connor E, Bressel MA (2003) Isoflavones and cognitive function in older women: the SOy and Postmenopausal Health In Aging (SOPHIA) Study. Menopause 10(3):196–202

    Article  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Article  Google Scholar 

  • Kurahashi N, Iwasaki M, Sasazuki S, Otani T, Inoue M, Tsugane S (2007) Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol Biomarkers Prev 16(3):538–545

    Article  CAS  PubMed  Google Scholar 

  • Kurauchi Y, Hisatsune A, Isohama Y, Mishima S, Katsuki H (2012) Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br J Pharmacol 166(3):1151–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamport DJ, Pal D, Macready AL, Barbosa-Boucas S, Fletcher JM, Williams CM, Spencer JP, Butler LT (2016) The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: an acute, randomised, placebo-controlled cross-over trial in healthy, young adults. Br J Nutr 116(12):2160–2168

    Article  CAS  PubMed  Google Scholar 

  • Lau FC, Shukitt-Hale B, Joseph JA (2006) Beneficial effects of berry fruit polyphenols on neuronal and behavioral aging. J Sci Food Agric 86(14):2251–2255

    Article  CAS  Google Scholar 

  • Lee KW, Lee HJ, Lee CY (2004) Vitamins, phytochemicals, diets, and their implementation in cancer chemoprevention. Crit Rev Food Sci Nutr 44(6):437–452

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Choi SH, Shin TJ, Pyo MK, Hwang SH, Kim BR, Lee SM, Lee JH, Kim HC, Park HY, Rhim H, Nah SY (2010) Quercetin enhances human α7 nicotinic acetylcholine receptor-mediated ion current through interactions with Ca(2+) binding sites. Mol Cells 30(3):245–253

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Choi SH, Shin TJ, Pyo MK, Hwang SH, Lee SM, Paik HD, Kim HC, Nah SY (2011) Effects of quercetin on α9α10 nicotinic acetylcholine receptor-mediated ion currents. Eur J Pharmacol 650(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Ryu HW, Kang MG, Park D, Lee H, Shin HM, Oh SR, Kim H (2017) Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi. Int J Biol Macromol 97:598–605

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Verma IM (2002) Erratum: NF-κB regulation in the immune system. Nat Rev Immunol 2(12):975–975

    Article  CAS  Google Scholar 

  • Lim H, Min DS, Park H, Kim HP (2018) Flavonoids interfere with NLRP3 inflammasome activation. Toxicol Appl Pharmacol 355:93–102

    Article  CAS  PubMed  Google Scholar 

  • Lin CW, Wu MJ, Liu IY, Su JD, Yen JH (2010) Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J Agric Food Chem 58(7):4477–4486

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang H, Xu C, Yang G, Tao J, Huang J, Wu J, Duan X, Cao Y, Dong J (2011) Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons. Brain Res 1375:59–67

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Cui L, Liu B, Liu W, Hayashi T, Mizuno K, Hattori S, Ushiki-Kaku Y, Onodera S, Ikejima T (2020) Silibinin ameliorates STZ-induced impairment of memory and learning by up-regulating insulin signaling pathway and attenuating apoptosis. Physiol Behav 213:112689

    Article  CAS  PubMed  Google Scholar 

  • Madeira JM, Schindler SM, Klegeris A (2015) A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases. Neural Regen Res 10(3):391–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37(3):304–317

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, Righetti R, Bocale R, Lechiara MC, Marini C, Ferri C, Desideri G (2015) Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study–a randomized controlled trial. Am J Clin Nutr 101(3):538–548

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Pierce ML, Cao Z, Jabba SV, Gerwick WH, Murray TF (2022) Antillatoxin-stimulated neurite outgrowth involves the brain-derived neurotrophic factor (BDNF)—tropomyosin related kinase B (TrkB) signaling pathway. J Nat Prod 85(3):562–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, Wang L, Tsuruga K, Tanaka H, Mimura J, Kosaka K, Itoh K, Takahashi I, Kawaguchi S, Imaizumi T (2015) Carnosic acid attenuates apoptosis induced by amyloid-β 1–42 or 1–43 in SH-SY5Y human neuroblastoma cells. Neurosci Res 94:1–9

    Article  CAS  PubMed  Google Scholar 

  • Meyer H, Bolarinwa A, Wolfram G, Linseisen J (2006) Bioavailability of apigenin from apiin-rich parsley in humans. Ann Nutr Metab 50(3):167–172

    Article  CAS  PubMed  Google Scholar 

  • Miao G, Zhao H, Guo K, Cheng J, Zhang S, Zhang X, Cai Z, Miao H, Shang Y (2014) Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi. Neural Regen Res 9(17):1592–1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Minocha T, Birla H, Obaid AA, Rai V, Sushma P, Shivamallu C, Moustafa M, Al-Shehri M, Al-Emam A, Tikhonova MA, Yadav SK, Poeggeler B, Singh D, Singh SK (2022) Flavonoids as promising neuroprotectants and their therapeutic potential against Alzheimer’s disease. Oxid Med Cell Longev 2022:6038996

    Article  PubMed  PubMed Central  Google Scholar 

  • Moosavi F, Hosseini R, Saso L, Firuzi O (2015) Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Dev Ther 10:23–42

    Google Scholar 

  • Moradi SZ, Jalili F, Farhadian N, Joshi T, Wang M, Zou L, Cao H, Farzaei MH, Xiao J (2022) Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Crit Rev Food Sci Nutr 62(13):3421–3436

    Article  CAS  PubMed  Google Scholar 

  • Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP (2023) Natural products as modulators of Nrf2 signaling pathway in neuroprotection. Int J Mol Sci 24(4):3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison RS, Kinoshita Y, Johnson MD, Ghatan S, Ho JT, Garden G (2002) Neuronal survival and cell death signaling pathways. Molecular and cellular biology of neuroprotection in the CNS. C. Alzheimer. Springer, Boston, pp 41–86

  • Mullard A (2021) Landmark Alzheimer’s drug approval confounds research community. Nature 594(7863):309–310

    Article  CAS  PubMed  ADS  Google Scholar 

  • Murphy MP, LeVine H 3rd (2010) Alzheimer’s disease and the amyloid-beta peptide. J Alzheimer’s Dis JAD 19(1):311–323

    Article  PubMed  Google Scholar 

  • Naderali E, Nikbakht F, Ofogh SN, Rasoolijazi H (2018) The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: a behavioral and histochemical approach. J Integr Neurosci 17(1):19–25

    Article  PubMed  Google Scholar 

  • Nagahama Y, Nabatame H, Okina T, Yamauchi H, Narita M, Fujimoto N, Murakami M, Fukuyama H, Matsuda M (2003) Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer’s disease. Eur Neurol 50(1):1–9

    Article  PubMed  Google Scholar 

  • Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51(9):2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Vo VG (2020) Role of body-fluid biomarkers in Alzheimer’s disease diagnosis. Diagnostics (basel) 10(5):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandström B, Dragsted LO (1999) Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 81(6):447–455

    Article  CAS  PubMed  Google Scholar 

  • Nigdelioglu Dolanbay S, Kocanci FG, Aslim B (2021) Neuroprotective effects of allocryptopine-rich alkaloid extracts against oxidative stress-induced neuronal damage. Biomed Pharmacother 140:111690

    Article  CAS  PubMed  Google Scholar 

  • Nisbet LJ, Moore M (1997) Will natural products remain an important source of drug research for the future? Curr Opin Biotechnol 8(6):708–712

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425(4):479–494

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Kwak S, Liu Y, Sun Y, Fang Z, Qin B, Yamamoto Y (2011) Traditional chinese medicine improves activities of daily living in Parkinson’s disease. Parkinsons Dis 2011:789506

    PubMed  PubMed Central  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panneerselvam M, Tsutsumi YM, Bonds JA, Horikawa YT, Saldana M, Dalton ND, Head BP, Patel PM, Roth DM, Patel HH (2010) Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation. Am J Physiol Heart Circ Physiol 299(5):H1604-1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M (2015) Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res 29(3):323–331

    Article  CAS  PubMed  Google Scholar 

  • Passamonti S, Vrhovsek U, Vanzo A, Mattivi F (2005) Fast access of some grape pigments to the brain. J Agric Food Chem 53(18):7029–7034

    Article  CAS  PubMed  Google Scholar 

  • Patterson C (2018) World alzheimer report 2018

  • Perrone L, Squillaro T, Napolitano F, Terracciano C, Sampaolo S, Melone MAB (2019) The autophagy signaling pathway: a potential multifunctional therapeutic target of curcumin in neurological and neuromuscular diseases. Nutrients 11(8):1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry E, Howes M-JR (2011) Medicinal plants and dementia therapy: herbal hopes for brain aging? CNS Neurosci Ther 17(6):683–698

    Article  PubMed  Google Scholar 

  • Phillips JC (2019) Why Aβ42 is much more toxic than Aβ40. ACS Chem Neurosci 10(6):2843–2847

    Article  CAS  PubMed  Google Scholar 

  • Planells-Cases R, Lerma J, Ferrer-Montiel A (2006) Pharmacological intervention at ionotropic glutamate receptor complexes. Curr Pharm Des 12(28):3583–3596

    Article  CAS  PubMed  Google Scholar 

  • Pohl F, Thoo Lin PK (2018) The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases. In vitro, in vivo and clinical trials. Molecules 23(12):3283

    Article  PubMed  PubMed Central  Google Scholar 

  • Postu PA, Noumedem JAK, Cioanca O, Hancianu M, Mihasan M, Ciorpac M, Gorgan DL, Petre BA, Hritcu L (2018) Lactuca capensis reverses memory deficits in Aβ1-42-induced an animal model of Alzheimer’s disease. J Cell Mol Med 22(1):111–122

    Article  CAS  PubMed  Google Scholar 

  • Prakash D, Sudhandiran G (2015) Dietary flavonoid fisetin regulates aluminium chloride-induced neuronal apoptosis in cortex and hippocampus of mice brain. J Nutr Biochem 26(12):1527–1539

    Article  CAS  PubMed  Google Scholar 

  • Prasanna P, Upadhyay A (2021) Flavonoid-based nanomedicines in Alzheimer’s disease therapeutics: promises made, a long way to go. ACS Pharmacol Transl Sci 4(1):74–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prior RL (2003) Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr 78(3 Suppl):570s–578s

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF (2017) Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev 36:11–19

    Article  CAS  PubMed  Google Scholar 

  • Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, Rashid SM, Madkhali H, Ganaie MA, Khan R (2019) Neuroprotective strategies for neurological disorders by natural products: an update. Curr Neuropharmacol 17(3):247–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25(38):8807–8814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Arce E, Saldías M (2021) Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Biomed Pharmacother 143:112236

    Article  PubMed  Google Scholar 

  • Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofman A, Breteler MM (2005) Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 57(6):789–794

    Article  PubMed  Google Scholar 

  • Rusek M, Smith J, El-Khatib K, Aikins K, Czuczwar SJ, Pluta R (2023) The role of the JAK/STAT signaling pathway in the pathogenesis of Alzheimer’s disease: new potential treatment target. Int J Mol Sci 24(1):864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu M, Irfan HM, Shah SA, Ahmed M, Naz I, Akram M, Fatima H, Farooq AS (2022) Friedelin attenuates neuronal dysfunction and memory impairment by inhibition of the activated JNK/NF-κB signalling pathway in scopolamine-induced mice model of neurodegeneration. Molecules 27(14):4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos G, Giraldez-Alvarez LD, Ávila-Rodriguez M, Capani F, Galembeck E, Neto AG, Barreto GE, Andrade B (2016) SUR1 receptor interaction with Hesperidin and Linarin predicts possible mechanisms of action of Valeriana officinalis in Parkinson. Front Aging Neurosci 8:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholey AB, French SJ, Morris PJ, Kennedy DO, Milne AL, Haskell CF (2010) Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol 24(10):1505–1514

    Article  CAS  PubMed  Google Scholar 

  • Schroeter H, Williams RJ, Matin R, Iversen L, Rice-Evans CA (2000) Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med 29(12):1222–1233

    Article  CAS  PubMed  Google Scholar 

  • Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M (2006) (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 103(4):1024–1029

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189–a006189

    Article  PubMed  PubMed Central  Google Scholar 

  • Shal B, Ding W, Ali H, Kim YS, Khan S (2018) Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol 9:548

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi ZM, Han YW, Han XH, Zhang K, Chang YN, Hu ZM, Qi HX, Ting C, Zhen Z, Hong W (2016) Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease. J Neurol Sci 366:127–134

    Article  CAS  PubMed  Google Scholar 

  • Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059

    Article  CAS  PubMed  Google Scholar 

  • Spagnuolo C, Moccia S, Russo GL (2018) Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 153:105–115

    Article  CAS  PubMed  Google Scholar 

  • Spencer JPE (2007) The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2(3):257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JP (2009) The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 38(4):1152–1161

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP (2010a) Beyond antioxidants: the cellular and molecular interactions of flavonoids and how these underpin their actions on the brain. Proc Nutr Soc 69(2):244–260

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP (2010b) The impact of fruit flavonoids on memory and cognition. Br J Nutr 104(Suppl 3):S40-47

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP, Rice-Evans C, Williams RJ (2003) Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 278(37):34783–34793

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP (2008) Flavonoids: modulators of brain function? Br J Nutr 99(Suppl 1):Es60–Es77

    Article  PubMed  Google Scholar 

  • Srivastava P, Tripathi PN, Sharma P, Rai SN, Singh SP, Srivastava RK, Shankar S, Shrivastava SK (2019) Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 163:116–135

    Article  CAS  PubMed  Google Scholar 

  • Tambe R, Patil A, Jain P, Sancheti J, Somani G, Sathaye S (2017) Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy. Pharm Biol 55(1):264–268

    Article  CAS  PubMed  Google Scholar 

  • Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, Hrelia P (2013) Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev 2013:415078

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi PN, Srivastava P, Sharma P, Tripathi MK, Seth A, Tripathi A, Rai SN, Singh SP, Shrivastava SK (2019) Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 85:82–96

    Article  CAS  PubMed  Google Scholar 

  • Tully T, Bourtchouladze R, Scott R, Tallman J (2003) Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2(4):267–277

    Article  CAS  PubMed  Google Scholar 

  • Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB (2006) Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 15(8):873–886

    Article  PubMed  Google Scholar 

  • Van Giau V, An SSA, Bagyinszky E, Kim S (2015) Gene panels and primers for next generation sequencing studies on neurodegenerative disorders. Mol Cell Toxicol 11(2):89–143

    Article  Google Scholar 

  • Van Giau V, An SSA, Hulme JP (2018) Mitochondrial therapeutic interventions in Alzheimer’s disease. J Neurol Sci 395:62–70

    Article  PubMed  Google Scholar 

  • Vauzour D, Vafeiadou K, Spencer JP (2007) Inhibition of the formation of the neurotoxin 5-S-cysteinyl-dopamine by polyphenols. Biochem Biophys Res Commun 362(2):340–346

    Article  CAS  PubMed  Google Scholar 

  • Vauzour D, Corona G, Spencer JP (2010) Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch Biochem Biophys 501(1):106–111

    Article  CAS  PubMed  Google Scholar 

  • Waltereit R, Dammermann B, Wulff P, Scafidi J, Staubli U, Kauselmann G, Bundman M, Kuhl D (2001) Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci off J Soc Neurosci 21(15):5484–5493

    Article  CAS  Google Scholar 

  • Wang J, Ho L, Zhao W, Ono K, Rosensweig C, Chen L, Humala N, Teplow DB, Pasinetti GM (2008) Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci off J Soc Neurosci 28(25):6388–6392

    Article  CAS  Google Scholar 

  • Wang WY, Tan MS, Yu JT, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3(10):136

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Zhou W, Chen J, Wei W (2019) Upstream regulators of phosphoinositide 3-kinase and their role in diseases. J Cell Physiol 234(9):14460–14472

    Article  CAS  PubMed  Google Scholar 

  • Wasek M, Nartowska J, Wawer I, Tudruj T (2001) Electron spin resonance assessment of the antioxidant potential of medicinal plants. Part I. Contribution of anthocyanosides and flavonoids to the radical scavenging ability of fruit and herbal teas. Acta Pol Pharm 58(4):283–288

    CAS  PubMed  Google Scholar 

  • Williams KJ, Fisher EA (2005) Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care 8(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Wang C, Chen H, Hu Y, Tian L, Pan J, Geng M (2014) Aβ-induced microglial cell activation is inhibited by baicalin through the JAK2/STAT3 signaling pathway. Int J Neurosci 124(8):609–620

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Bai L, Chen L, Tong R, Feng Y, Shi J (2022) Terpenoid natural products exert neuroprotection via the PI3K/Akt pathway. Front Pharmacol. https://doi.org/10.3389/fphar.2022.1036506

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Bian GX, Lu QJ (2008) Neuroprotection and neurotrophism effects of liquiritin on primary cultured hippocampal cells. Zhongguo Zhong Yao Za Zhi 33(8):931–935

    PubMed  Google Scholar 

  • Yao N, Song A, Wang X, Dixon S, Lam KS (2007) Synthesis of flavonoid analogues as scaffolds for natural product-based combinatorial libraries. J Comb Chem 9(4):668–676

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Hu J, Qian J, Hackam AS (2012) Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. NeuroReport 23(3):189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuliana ND, Khatib A, Choi YH, Verpoorte R (2011) Metabolomics for bioactivity assessment of natural products. Phytother Res 25(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Zeng YQ, Wang YJ, Zhou XF (2014) Effects of (-)epicatechin on the pathology of APP/PS1 transgenic mice. Front Neurol 5:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng YQ, Cui YB, Gu JH, Liang C, Zhou XF (2018) Scutellarin mitigates Aβ-induced neurotoxicity and improves behavior impairments in AD mice. Molecules 23(4):869

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan C, Lao Z, Tang Y, Qiao Q, Wei G (2021) Natural stereoisomeric flavonoids exhibit different disruptive effects and the mechanism of action on Aβ42 protofibril. Chem Commun 57(35):4267–4270

    Article  CAS  Google Scholar 

  • Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12(1):9–18

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Zhang F, Wang YY, Liu H, Lu YF, Wu Q, Liu J, Shi JS (2012) Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting astroglial BDNF and GDNF release. Evid Based Complement Alternat Med 2012:937605

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Cai L, Zhou X, Su C, Xiao F, Gao Q, Luo H (2015) Methyl 3,4-dihydroxybenzoate promote rat cortical neurons survival and neurite outgrowth through the adenosine A2a receptor/PI3K/Akt signaling pathway. NeuroReport 26(6):367–373

    Article  PubMed  Google Scholar 

  • Zhang C-C, Cao C-Y, Kubo M, Harada K, Yan X-T, Fukuyama Y, Gao J-M (2017a) Chemical constituents from Hericium erinaceus promote neuronal survival and potentiate neurite outgrowth via the TrkA/Erk1/2 pathway. Int J Mol Sci 18(8):1659

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Tomata Y, Sugiyama K, Sugawara Y, Tsuji I (2017b) Citrus consumption and incident dementia in elderly Japanese: the Ohsaki Cohort 2006 Study. Br J Nutr 117(8):1174–1180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not available

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in discussion during manuscript planning and writing.

Corresponding authors

Correspondence to Tuong Kha Vo or Thuy Trang Nguyen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Thi, PT., Vo, T.K., Pham, T.H.T. et al. Natural flavonoids as potential therapeutics in the management of Alzheimer’s disease: a review. 3 Biotech 14, 68 (2024). https://doi.org/10.1007/s13205-024-03925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-024-03925-8

Keywords

Navigation