Skip to main content

Advertisement

Log in

Flavonoids and Alzheimer’s disease: reviewing the evidence for neuroprotective potential

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Neurodegeneration, which manifests as several chronic and incurable diseases, is an age-related condition that affects the central nervous system (CNS) and poses a significant threat to the public’s health for the elderly. Recent decades have experienced an alarming increase in the incidence of neurodegenerative disorders (NDDs), a severe public health issue due to the ongoing development of people living in modern civilizations. Alzheimer’s disease (AD) is a leading trigger of age-related dementia. Currently, there are no efficient therapeutics to delay, stop, or reverse the disease’s course development. Several studies found that dietary bioactive phytochemicals, primarily flavonoids, influence the pathophysiological processes underlying AD. Flavonoids work well as a supplement to manufactured therapies for NDDs. Flavonoids are effective in complementing synthetic approaches to treat NDDs. They are biologically active phytochemicals with promising pharmacological activities, for instance, antiviral, anti-allergic, antiplatelet, anti-inflammatory, antitumor, anti-apoptotic, and antioxidant effects. The production of nitric oxide (NO), tumor necrosis factor (TNF-α), and oxidative stress (OS) are downregulated by flavonoids, which slow the course of AD. Hence, this research turned from preclinical evidence to feasible clinical applications to develop newer therapeutics, focusing on the therapeutic potential of flavonoids against AD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

NDDs:

Neurodegenerative disorders

AD:

Alzheimer’s disease

NO:

Nitric oxide

TNF-α:

Tumor necrosis factor alpha

OS:

Oxidative stress

APP:

Amyloid precursor protein

Aβ:

Amyloid-beta

PS1:

Presenilin 1

PS2:

Presenilin 2

PET:

Positron emission tomography

CSF:

Cerebrospinal fluid

NFTs:

Neurofibrillary tangles

Ach:

Acetylcholine

APOE:

Apolipoprotein E

APOJ:

Apolipoprotein J

SORL:

Sortilin-related receptor L

IL-6:

Interleukin-6

GM:

Gut microbiota

HF:

Hawthorn flavonoid

AβO:

Amyloid-β oligomers

BDNF:

Brain-derived neurotrophic factors

PTP1B:

Potent protein-tyrosine phosphatase 1B

STZ:

Streptozotocin

N2a:

Neuro-2a

BACE1:

β-Site amyloid precursor protein-cleaving enzyme 1

NF-κB:

Nuclear factor-κB

MAPKs:

Mitogen-activated protein kinases

LPS:

Lipopolysaccharide

NOD2:

Nucleotide oligomerization domain protein 2

MMP:

Mitochondrial membrane potential

RIP2:

Receptor-interacting protein 2

6-OHDA:

6-Hydroxydopamine

CH:

Catechin hydrate

EGCG:

Epigallocatechin-3-gallate

TH:

Tyrosine hydroxylase

Non-Tg:

Non-transgenic

MAO-A:

Monoamine oxidase-A

ROS:

Reactive oxygen species

C3G:

Cyanidin-3-glucoside

ER:

Estrogen receptor

AChE:

Acetylcholinesterase

MAPs:

Microtubule-associated proteins

TAI:

Tau aggregation inhibitor

MTC:

Methylthioninium chloride

HMG-CoA:

Hydroxymethylglutaryl-CoA

MCI:

Mild cognitive impairment

MMSE:

Mini-Mental State Examination

References

  1. Mao Z, Zheng YL, Zhang YQ et al (2007) The anti-apoptosis effects of daidzein in the brain of D-galactose treated mice. Molecules 12:1455–1470. https://doi.org/10.3390/12071455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hussain G, Schmitt F, Henriques A et al (2013) Systemic down-regulation of delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury. PLoS One. https://doi.org/10.1371/journal.pone.0064525

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao M, Su J, Head E, Cotman CW (2003) Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer’s disease. Neurobiol Dis 14:391–403. https://doi.org/10.1016/j.nbd.2003.07.006

    Article  CAS  PubMed  Google Scholar 

  4. Argüelles S, Guerrero-Castilla A, Cano M et al (2019) Advantages and disadvantages of apoptosis in the aging process. Ann N Y Acad Sci 1443:20–33. https://doi.org/10.1111/nyas.14020

    Article  PubMed  Google Scholar 

  5. Eliwa H, Brizard B, Le Guisquet AM et al (2021) Adult neurogenesis augmentation attenuates anhedonia and HPA axis dysregulation in a mouse model of chronic stress and depression. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2020.105097

    Article  PubMed  Google Scholar 

  6. Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N (2018) Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed Res Int. https://doi.org/10.1155/2018/3740461

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mansour HM, Fawzy HM, El-Khatib AS, Khattab MM (2021) Potential repositioning of anti-cancer EGFR inhibitors in Alzheimer’s disease: current perspectives and challenging prospects. Neuroscience 469:191–196. https://doi.org/10.1016/j.neuroscience.2021.06.013

    Article  CAS  PubMed  Google Scholar 

  8. Rai SN, Singh C, Singh A et al (2020) Mitochondrial dysfunction: a potential therapeutic target to treat Alzheimer’s disease. Mol Neurobiol 57:3075–3088

    Article  CAS  PubMed  Google Scholar 

  9. Das R, Rauf A, Akhter S et al (2021) Role of withaferin a and its derivatives in the management of Alzheimer’s disease: recent trends and future perspectives. Molecules. https://doi.org/10.3390/molecules26123696

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grodzicki W, Dziendzikowska K (2020) The role of selected bioactive compounds in the prevention of Alzheimer’s disease. Antioxidants 9:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Drew J, Berney W, Lei W (2021) Neuroprotective natural products for Alzheimer’s disease. Cells 10:1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith MA, Rottkamp CA, Nunomura A et al (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta (bBA)-Molecular Basis Dis 1502:139–144

    Article  CAS  Google Scholar 

  13. Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43:658–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B 827:65–75

    Article  CAS  Google Scholar 

  15. Gregory J, Vengalasetti YV, Bredesen DE, Rao RV (2021) Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules 11:543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rahman MM, Bibi S, Rahaman MS et al (2022) Natural therapeutics and nutraceuticals for lung diseases: traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 150:113041

    Article  CAS  PubMed  Google Scholar 

  17. Cory H, Passarelli S, Szeto J et al (2018) The role of polyphenols in human health and food systems: a mini-review. Front Nutr. https://doi.org/10.3389/fnut.2018.00087

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li X, Chu S, Liu Y, Chen N (2019) Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evid-Based Complement Altern Med. https://doi.org/10.1155/2019/3790728

    Article  Google Scholar 

  19. Lutz M, Fuentes E, Ávila F et al (2019) Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules. https://doi.org/10.3390/molecules24020366

    Article  PubMed  PubMed Central  Google Scholar 

  20. Velmurugan BK, Rathinasamy B, Lohanathan BP et al (2018) Neuroprotective role of phytochemicals. Molecules. https://doi.org/10.3390/molecules23102485

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bahbah EI, Ghozy S, Attia MS et al (2021) Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent. Mar Drugs. https://doi.org/10.3390/md19040201

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mitra S, Prova SR, Sultana SA et al (2021) Therapeutic potential of indole alkaloids in respiratory diseases: a comprehensive review. Phytomedicine. https://doi.org/10.1016/j.phymed.2021.153649

    Article  PubMed  Google Scholar 

  23. Islam F, Mitra S, Nafady MH et al (2022) Neuropharmacological and antidiabetic potential of Lannea coromandelica (Houtt.) Merr. leaves extract: an experimental analysis. Evidence-Based Complement Altern Med. https://doi.org/10.1155/2022/6144733

    Article  Google Scholar 

  24. Wang J, Song Y, Chen Z, Leng SX (2018) Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2018/1972714

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kabir MT, Uddin MS, Jeandet P et al (2021) Anti-Alzheimer’s molecules derived from marine life: understanding molecular mechanisms and therapeutic potential. Mar Drugs. https://doi.org/10.3390/md19050251

    Article  PubMed  PubMed Central  Google Scholar 

  26. Webster L, Groskreutz D, Grinbergs-Saull A et al (2017) Core outcome measures for interventions to prevent or slow the progress of dementia for people living with mild to moderate dementia: systematic review and consensus recommendations. PLoS ONE 12:e0179521

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663

    Article  CAS  PubMed  Google Scholar 

  28. Villemagne VL, Doré V, Burnham SC et al (2018) Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol 14:225–236

    Article  CAS  PubMed  Google Scholar 

  29. Vaz M, Silvestre S (2020) Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol 887:173554

    Article  CAS  PubMed  Google Scholar 

  30. Price JL, McKeel DW Jr, Buckles VD et al (2009) Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging 30:1026–1036

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 80(297):353–356

    Article  Google Scholar 

  32. Vos SJB, Xiong C, Visser PJ et al (2013) Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol 12:957–965

    Article  PubMed  PubMed Central  Google Scholar 

  33. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809

    Article  CAS  PubMed  Google Scholar 

  34. Gómez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc 41:17–24

    Google Scholar 

  35. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    Article  PubMed  Google Scholar 

  36. Wang SC, Oeize B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One. https://doi.org/10.1371/journal.pone.0002698

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fratiglioni L, Ahlbom A, Viitanen M, Winblad B (2024) Risk factors for late-onset Alzheimer’s disease: a population-based, case-control study. Ann Neurol Mar 33(3):258–266

    Article  Google Scholar 

  38. Hersi M, Irvine B, Gupta P et al (2017) Risk factors associated with the onset and progression of Alzheimer’s disease: a systematic review of the evidence. Neurotoxicology 61:143–187. https://doi.org/10.1016/j.neuro.2017.03.006

    Article  PubMed  Google Scholar 

  39. Henderson VW (2006) Estrogen-containing hormone therapy and Alzheimer’s disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience 138:1031–1039. https://doi.org/10.1016/j.neuroscience.2005.06.017

    Article  CAS  PubMed  Google Scholar 

  40. Nagy ZS, Esiri MM, Jobst KA et al (1995) Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer’s disease. Neuroscience 69:757–761. https://doi.org/10.1016/0306-4522(95)00331-C

    Article  CAS  PubMed  Google Scholar 

  41. Koedam ELGE, Lauffer V, Van Der Vlies AE et al (2010) Early-versus late-onset Alzheimer’s disease: more than age alone. J Alzheimer’s Dis 19:1401–1408. https://doi.org/10.3233/JAD-2010-1337

    Article  Google Scholar 

  42. Defina PA, Moser RS, Glenn M et al (2013) Alzheimer’s disease clinical and research update for health care practitioners. J Aging Res. https://doi.org/10.1155/2013/207178

    Article  PubMed  PubMed Central  Google Scholar 

  43. Solomon A, Mangialasche F, Richard E et al (2014) Advances in the prevention of Alzheimer’s disease and dementia. J Intern Med 275:229–250. https://doi.org/10.1111/joim.12178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639. https://doi.org/10.1038/nature02621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 13:612–623. https://doi.org/10.1038/nrneurol.2017.111

    Article  CAS  PubMed  Google Scholar 

  46. Lassmann H, Fischer P, Jellinger K (1993) Synaptic pathology of Alzheimer’s disease. Annals of the New York Academy of Sciences. Springer, New York, pp 59–64

    Google Scholar 

  47. Moreira PI, Carvalho C, Zhu X et al (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta (BBA) Molecular Basis Dis 1802:2–10

    Article  CAS  Google Scholar 

  48. Godyń J, Jończyk J, Panek D, Malawska B (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68:127–138. https://doi.org/10.1016/j.pharep.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  49. Korolev IO (2014) Alzheimer ‘s disease : a clinical and basic science review. Med Student Res J 04:24–33

    Google Scholar 

  50. Chávez-Gutiérrez L, Szaruga M (2020) Mechanisms of neurodegeneration — Insights from familial Alzheimer’s disease. Seminars in cell and developmental biology. Academic Press, Cambridge, pp 75–85

    Google Scholar 

  51. Abeysinghe AADT, Deshapriya RDUS, Udawatte C (2020) Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci. https://doi.org/10.1016/j.lfs.2020.117996

    Article  PubMed  Google Scholar 

  52. Rusanen M, Kivipelto M, Quesenberry CP et al (2011) Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med 171:333–339

    Article  PubMed  Google Scholar 

  53. Ngandu T, Lehtisalo J, Solomon A et al (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385:2255–2263

    Article  PubMed  Google Scholar 

  54. Aisen PS, Cummings J, Jack CR et al (2017) On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res Ther 9:1–10

    Article  Google Scholar 

  55. Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 28:3–13

    Article  CAS  PubMed  Google Scholar 

  56. Nixon RA, Yang D-S (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4:a008839

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pomilio C, Gorojod RM, Riudavets M et al (2020) Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer’s disease patients. GeroScience 42:613–632. https://doi.org/10.1007/s11357-020-00161-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alberdi E, Wyssenbach A, Alberdi M et al (2013) Ca2+-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12:292–302. https://doi.org/10.1111/acel.12054

    Article  CAS  PubMed  Google Scholar 

  59. Vaquer-Alicea J, Diamond MI (2019) Propagation of protein aggregation in neurodegenerative diseases. Annu Rev Biochem 88:785–810. https://doi.org/10.1146/annurev-biochem-061516-045049

    Article  CAS  PubMed  Google Scholar 

  60. Xu W, Xu Q, Cheng H, Tan X (2017) The efficacy and pharmacological mechanism of Zn7MT3 to protect against Alzheimer’s disease. Sci Rep. https://doi.org/10.1038/s41598-017-12800-x

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dhandapani KM, Brann DW (2002) Protective effects of estrogen and selective estrogen receptor modulators in the brain. Biol Reprod 67:1379–1385. https://doi.org/10.1095/biolreprod.102.003848

    Article  CAS  PubMed  Google Scholar 

  62. Pereira C, Agostinho P, Moreira PI et al (2005) Alzheimer’s disease-associated neurotoxic mechanisms and neuroprotective strategies. Curr Drug Targets CNS Neurol Disord 4:383–403. https://doi.org/10.2174/1568007054546117

    Article  CAS  PubMed  Google Scholar 

  63. Turab Naqvi AA, Hasan GM, Hassan MI (2020) Targeting tau hyperphosphorylation via kinase inhibition: strategy to address Alzheimer’s disease. Curr Top Med Chem 20:1059–1073. https://doi.org/10.2174/1568026620666200106125910

    Article  CAS  PubMed  Google Scholar 

  64. Maccioni RB, Farías G, Morales I, Navarrete L (2010) The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res 41:226–231

    Article  CAS  PubMed  Google Scholar 

  65. Du X, Wang X, Geng M (2018) Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 7:1–7. https://doi.org/10.1186/s40035-018-0107-y

    Article  CAS  Google Scholar 

  66. Dong X, Qu S (2022) Erigeron breviscapus (Vant.) Hand-Mazz.: a promising natural neuroprotective agent for Alzheimer’s disease. Front Pharmacol 13:877872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haam J, Yakel JL (2017) Cholinergic modulation of the hippocampal region and memory function. J Neurochem 142:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miranda MI, Bermúdez-Rattoni F (1999) Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc Natl Acad Sci 96:6478–6482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Freeman SE, Dawson RM (1991) Tacrine: a pharmacological review. Prog Neurobiol 36:257–277

    Article  CAS  PubMed  Google Scholar 

  70. Brinkman SD, Gershon S (1983) Measurement of cholinergic drug effects on memory in Alzheimer’s disease. Neurobiol Aging 4:139–145

    Article  CAS  PubMed  Google Scholar 

  71. Feno S, Butera G, Vecellio Reane D et al (2019) Crosstalk between calcium and ROS in pathophysiological conditions. Oxid Med Cell Longev. https://doi.org/10.1155/2019/9324018

    Article  PubMed  PubMed Central  Google Scholar 

  72. Juszczyk G, Mikulska J, Kasperek K et al (2021) Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: the role of antioxidants in prevention and treatment. Antioxidants 10:1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stelzmann RA, Norman Schnitzlein H, Reed Murtagh F (1995) An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde.” Clin Anat 8:429–431. https://doi.org/10.1002/ca.980080612

    Article  PubMed  Google Scholar 

  74. Frederiksen HR, Haukedal H, Freude K (2019) Cell type specific expression of toll-like receptors in human brains and implications in Alzheimer’s disease. Biomed Res Int. https://doi.org/10.1155/2019/7420189

    Article  PubMed  PubMed Central  Google Scholar 

  75. Roda AR, Montoliu-Gaya L, Villegas S (2019) The role of apolipoprotein e isoforms in Alzheimer’s disease. J Alzheimer’s Dis 68:459–471. https://doi.org/10.3233/JAD-180740

    Article  Google Scholar 

  76. Boza-Serrano A, Yang Y, Paulus A, Deierborg T (2018) Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer’s disease mouse model 5xFAD. Sci Rep. https://doi.org/10.1038/s41598-018-19699-y

    Article  PubMed  PubMed Central  Google Scholar 

  77. Durafourt BA, Moore CS, Zammit DA et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727. https://doi.org/10.1002/glia.22298

    Article  PubMed  Google Scholar 

  78. Ueda Y, Gullipalli D, Song WC (2016) Modeling complement-driven diseases in transgenic mice: values and limitations. Immunobiology 221:1080–1090. https://doi.org/10.1016/j.imbio.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  79. McQuade A, Blurton-Jones M (2019) Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol 431:1805–1817. https://doi.org/10.1016/j.jmb.2019.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sierra A, Gottfried-Blackmore AC, Mcewen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55:412–424. https://doi.org/10.1002/glia.20468

    Article  PubMed  Google Scholar 

  81. Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29:506–510. https://doi.org/10.1016/j.tins.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  82. Patel NS, Paris D, Mathura V et al (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation. https://doi.org/10.1186/1742-2094-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bamberger ME, Harris ME, McDonald DR et al (2003) A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 23:2665–2674. https://doi.org/10.1523/jneurosci.23-07-02665.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective β-amyloid clearance pathways in aging alzheimer’s disease mice. J Neurosci 28:8354–8360. https://doi.org/10.1523/JNEUROSCI.0616-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sinsky J, Pichlerova K, Hanes J (2021) Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies. Int J Mol Sci 22:9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gauthier S, Feldman HH, Schneider LS et al (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388:2873–2884. https://doi.org/10.1016/S0140-6736(16)31275-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uddin MS, Kabir MT, Tewari D et al (2020) Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer’s disease. J Neurol Sci 416:116974

    Article  CAS  PubMed  Google Scholar 

  88. Dong Z, Huo J, Liang A et al (2021) Gamma-Secretase Inhibitor (DAPT), a potential therapeutic target drug, caused neurotoxicity in planarian regeneration by inhibiting Notch signaling pathway. Sci Total Environ 781:146735. https://doi.org/10.1016/j.scitotenv.2021.146735

    Article  CAS  PubMed  Google Scholar 

  89. Shefa U, Kim D, Kim MS et al (2018) Roles of gasotransmitters in synaptic plasticity and neuropsychiatric conditions. Neural Plast. https://doi.org/10.1155/2018/1824713

    Article  PubMed  PubMed Central  Google Scholar 

  90. Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223. https://doi.org/10.1016/S0140-6736(08)61075-2

    Article  CAS  PubMed  Google Scholar 

  91. Laskowitz DT, Kolls BJ (2010) A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate alzheimer disease. Neurology 74:2026. https://doi.org/10.1212/WNL.0b013e3181e03844

    Article  PubMed  Google Scholar 

  92. Ultsch M, Li B, Maurer T et al (2016) Structure of crenezumab complex with aβ shows loss of β-hairpin. Sci Rep 6:1–11. https://doi.org/10.1038/srep39374

    Article  CAS  Google Scholar 

  93. Huang LK, Chao SP, Hu CJ (2020) Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 27:1–13. https://doi.org/10.1186/s12929-019-0609-7

    Article  CAS  Google Scholar 

  94. Landen JW, Zhao Q, Cohen S et al (2013) Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate alzheimer disease: A phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin Neuropharmacol 36:14–23. https://doi.org/10.1097/WNF.0b013e31827db49b

    Article  CAS  PubMed  Google Scholar 

  95. Cummings JL, Cohen S, Van Dyck CH et al (2018) A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 90:E1889–E1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aisen PS, Gauthier S, Ferris SH et al (2011) Tramiprosate in mild-to-moderate Alzheimer’s disease - A randomized, double-blind, placebo-controlled, multi-centre study (the alphase study). Arch Med Sci 7:102–111. https://doi.org/10.5114/aoms.2011.20612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Karran E, Mercken M, De SB (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712. https://doi.org/10.1038/nrd3505

    Article  CAS  PubMed  Google Scholar 

  98. Nie Q, Du XG, Geng MY (2011) Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol Sin 32:545–551. https://doi.org/10.1038/aps.2011.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sevigny J, Chiao P, Bussière T et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56. https://doi.org/10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  100. Siemers ER, Sundell KL, Carlson C et al (2016) Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s Dement 12:110–120. https://doi.org/10.1016/j.jalz.2015.06.1893

    Article  Google Scholar 

  101. Karran E (2015) Recent trial shows that solanezumab has disease modifying effects. BMJ 351:. https://doi.org/10.1136/bmj.h4528

  102. Barrera-Ocampo A, Lopera F (2016) Amyloid-beta immunotherapy: the hope for Alzheimer disease? Colomb Med 47:203–212. https://doi.org/10.25100/CM.V47I4.2640

    Article  Google Scholar 

  103. Shabbir U, Tyagi A, Elahi F et al (2021) The potential role of polyphenols in oxidative stress and inflammation induced by gut microbiota in alzheimer’s disease. Antioxidants 10:1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ticinesi A, Mancabelli L, Carnevali L et al (2022) Interaction between diet and microbiota in the pathophysiology of Alzheimer’s disease: focus on polyphenols and dietary fibers. J Alzheimer’s Dis 86:961–982

    Article  CAS  Google Scholar 

  105. Zhang J, Hao J, Liu R et al (2022) Hawthorn flavonoid ameliorates cognitive deficit in mice with Alzheimer’s disease by increasing the levels of Bifidobacteriales in gut microbiota and docosapentaenoic acid in serum metabolites. Food Funct 13:12371–12382

    Article  CAS  PubMed  Google Scholar 

  106. Rahman MM, Islam F, Anwar Parvez MAK et al (2022) Citrus limon L. (lemon) seed extract shows neuro-modulatory activity in an in vivo thiopental-sodium sleep model by reducing the sleep onset and enhancing the sleep duration. J Integr Neurosci 21:1–9

    Article  Google Scholar 

  107. Mutha RE, Tatiya AU, Surana SJ (2021) Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Futur J Pharm Sci. https://doi.org/10.1186/s43094-020-00161-8

    Article  PubMed  PubMed Central  Google Scholar 

  108. Khan A, Jahan S, Alshahrani S et al (2021) Phytotherapeutic agents for neurodegenerative disorders: a neuropharmacological review. Phytomedicine. Academic Press, Cambridge, pp 581–620

    Chapter  Google Scholar 

  109. Han VX, Patel S, Jones HF, Dale RC (2021) Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 17:564–579. https://doi.org/10.1038/s41582-021-00530-8

    Article  PubMed  Google Scholar 

  110. Spencer JPE, Vafeiadou K, Williams RJ, Vauzour D (2012) Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 33:83–97. https://doi.org/10.1016/j.mam.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  111. Devi KP, Shanmuganathan B, Manayi A et al (2017) Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol Neurobiol 54:7028–7041. https://doi.org/10.1007/s12035-016-0215-6

    Article  CAS  PubMed  Google Scholar 

  112. Hamza Sherif S, Gebreyohannes BT (2018) Synthesis, characterization, and antioxidant activities of genistein, biochanin a, and their analogues. J Chem. https://doi.org/10.1155/2018/4032105

    Article  Google Scholar 

  113. Ye S, Wang TT, Cai B et al (2017) Genistein protects hippocampal neurons against injury by regulating calcium/calmodulin dependent protein kinase IV protein levels in Alzheimer’s disease model rats. Neural Regen Res 12:1479–1484. https://doi.org/10.4103/1673-5374.215260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jung W, Yu O, Lau SMC et al (2000) Erratum: identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:559. https://doi.org/10.1038/75448

    Article  Google Scholar 

  115. Fedoreyev SA, Pokushalova TV, Veselova MV et al (2000) Isoflavonoid production by callus cultures of Maackia amurensis. Fitoterapia 71:365–372. https://doi.org/10.1016/S0367-326X(00)00129-5

    Article  CAS  PubMed  Google Scholar 

  116. Choi RCY, Zhu JTT, Yung AWY et al (2013) Synergistic action of flavonoids, baicalein, and daidzein in estrogenic and neuroprotective effects: a development of potential health products and therapeutic drugs against Alzheimer’s disease. Evidence-based Complement Altern Med. https://doi.org/10.1155/2013/635694

    Article  Google Scholar 

  117. Peterson G, Barnes S (1991) Genistein inhibition of the growth of human breast cancer cells: Independence from estrogen receptors and the multi-drug resistance gene. Biochem Biophys Res Commun 179:661–667. https://doi.org/10.1016/0006-291X(91)91423-A

    Article  CAS  PubMed  Google Scholar 

  118. Wang WY, Tan MS, Yu JT, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. https://doi.org/10.3978/j.issn.2305-5839.2015.03.49

    Article  PubMed  PubMed Central  Google Scholar 

  119. Röhrdanz E, Ohler S, Tran-Thi QH, Kahl R (2002) The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells. J Nutr 132:370–375. https://doi.org/10.1093/jn/132.3.370

    Article  PubMed  Google Scholar 

  120. Jiang T, Sun Q, Chen S (2016) Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 147:1–19. https://doi.org/10.1016/j.pneurobio.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  121. Fu X, Zhang J, Guo L et al (2014) Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 126:122–130. https://doi.org/10.1016/j.pbb.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  122. Nabavi SF, Braidy N, Gortzi O et al (2015) Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull 119:1–11. https://doi.org/10.1016/j.brainresbull.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  123. Choi JS, Islam MN, Ali MY et al (2014) The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Arch Pharm Res 37:1354–1363. https://doi.org/10.1007/s12272-014-0351-3

    Article  CAS  PubMed  Google Scholar 

  124. Ali F, Rahul JS et al (2019) Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci Lett 692:90–99. https://doi.org/10.1016/j.neulet.2018.10.053

    Article  CAS  PubMed  Google Scholar 

  125. Zhao G, Yao-Yue C, Qin GW, Guo LH (2012) Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons. Neurobiol Aging 33:176–186. https://doi.org/10.1016/j.neurobiolaging.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  126. Sawmiller D, Li S, Shahaduzzaman M et al (2014) Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. Int J Mol Sci 15:895–904. https://doi.org/10.3390/ijms15010895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang H, Wang H, Cheng H, Che Z (2016) Ameliorating effect of luteolin on memory impairment in an Alzheimer’s disease model. Mol Med Rep 13:4215–4220. https://doi.org/10.3892/mmr.2016.5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Namsi A, Nury T, Hamdouni H et al (2018) Induction of neuronal differentiation of murine N2a cells by two polyphenols present in the mediterranean diet mimicking neurotrophins activities: resveratrol and apigenin. Diseases 6:67. https://doi.org/10.3390/diseases6030067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Balez R, Steiner N, Engel M et al (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep. https://doi.org/10.1038/srep31450

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jangdey MS, Gupta A, Sarwa K (2018) Apigenin and quercetin: potential therapeutic challenging effective against in Alzheimer’s disease. Pharm Biosci J. https://doi.org/10.20510/ukjpb/6/i1/173531

    Article  Google Scholar 

  131. Wei D, Tang J, Bai W et al (2014) Ameliorative effects of baicalein on an amyloid-βinduced Alzheimer’s disease rat model: a proteomics study. Curr Alzheimer Res 11:1–1. https://doi.org/10.2174/1567205011666141001113619

    Article  CAS  Google Scholar 

  132. Chirumbolo S, Bjørklund G (2016) Commentary: the flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Front Neurol 7:309–321. https://doi.org/10.3389/fneur.2016.00141

    Article  Google Scholar 

  133. Zhou L, Tan S, Shan YL et al (2016) Baicalein improves behavioral dysfunction induced by Alzheimer’s disease in rats. Neuropsychiatr Dis Treat 12:3145–3152. https://doi.org/10.2147/NDT.S117469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gu X-H, Xu L-J, Liu Z-Q et al (2016) The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behav Brain Res 311:309–321

    Article  CAS  PubMed  Google Scholar 

  135. Chen HL, Lee HJ, Huang WJ et al (2012) Clerodendrum inerme leaf extract alleviates animal behaviors, hyperlocomotion, and prepulse inhibition disruptions, mimicking tourette syndrome and schizophrenia. Evidence-based Complement Altern Med. https://doi.org/10.1155/2012/284301

    Article  Google Scholar 

  136. Shen KH, Hung SH, Te YL et al (2010) Acacetin, a flavonoid, inhibits the invasion and migration of human prostate cancer DU145 cells via inactivation of the p38 MAPK signaling pathway. Mol Cell Biochem 333:279–291. https://doi.org/10.1007/s11010-009-0229-8

    Article  CAS  PubMed  Google Scholar 

  137. Shim HY, Park JH, Paik HD et al (2007) Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation. Molecules and cells. Springer Science & Business Media BV, Berlin, pp 95–104

    Google Scholar 

  138. Pan MH, Lai CS, Wang YJ, Ho CT (2006) Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem Pharmacol 72:1293–1303. https://doi.org/10.1016/j.bcp.2006.07.039

    Article  CAS  PubMed  Google Scholar 

  139. Tak PP, Firestein GS (2001) NF-κB: A key role in inflammatory diseases. J Clin Invest 107:7–11. https://doi.org/10.1172/JCI11830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Waetzig V, Czeloth K, Hidding U et al (2005) c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50:235–246. https://doi.org/10.1002/glia.20173

    Article  PubMed  Google Scholar 

  141. Schieven G (2005) The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5:921–928

    Article  CAS  PubMed  Google Scholar 

  142. Ha SK, Moon E, Lee P et al (2012) Acacetin attenuates neuroinflammation via regulation the response to LPS stimuli in Vitro and in Vivo. Neurochem Res 37:1560–1567. https://doi.org/10.1007/s11064-012-0751-z

    Article  CAS  PubMed  Google Scholar 

  143. Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s Disease. J Alzheimer’s Dis 57:1041–1048. https://doi.org/10.3233/JAD-160763

    Article  CAS  Google Scholar 

  144. Lin TY, Huang WJ, Wu CC et al (2014) Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats. PLoS One. https://doi.org/10.1371/journal.pone.0088644

    Article  PubMed  PubMed Central  Google Scholar 

  145. Garg A, Garg S, Zaneveld LJD, Singla AK (2001) Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phyther Res 15:655–669. https://doi.org/10.1002/ptr.1074

    Article  CAS  Google Scholar 

  146. Kim JY, Jung KJ, Choi JS, Chung HY (2004) Hesperetin: a potent antioxidant against peroxynitrite. Free Radic Res 38:761–769. https://doi.org/10.1080/10715760410001713844

    Article  CAS  PubMed  Google Scholar 

  147. Parhiz H, Roohbakhsh A, Soltani F et al (2015) Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phyther Res 29:323–331. https://doi.org/10.1002/ptr.5256

    Article  CAS  Google Scholar 

  148. Cho J (2006) Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch Pharm Res 29:699–706. https://doi.org/10.1007/BF02968255

    Article  CAS  PubMed  Google Scholar 

  149. Huang SM, Tsai SY, Lin JA et al (2012) Cytoprotective effects of hesperetin and hesperidin against amyloid β-induced impairment of glucose transport through downregulation of neuronal autophagy. Mol Nutr Food Res 56:601–609. https://doi.org/10.1002/mnfr.201100682

    Article  CAS  PubMed  Google Scholar 

  150. Yin L, Cheng W, Qin Z et al (2015) Effects of naringin on proliferation and osteogenic differentiation of human periodontal ligament stem cells in vitro and in vivo. Stem Cells Int. https://doi.org/10.1155/2015/758706

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhang J, Gao W, Liu Z et al (2014) Systematic analysis of main constituents in rat biological samples after oral administration of the methanol extract of fructus aurantii by HPLC-ESI-MS/MS. Iran J Pharm Res 13:493–503

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang DM, Yang YJ, Zhang L et al (2013) Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimer’s disease. Int J Mol Sci 14:5576–5586. https://doi.org/10.3390/ijms14035576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chanet A, Milenkovic D, Manach C et al (2012) Citrus flavanones: what is their role in cardiovascular protection? J Agric Food Chem 60:8809–8822. https://doi.org/10.1021/jf300669s

    Article  CAS  PubMed  Google Scholar 

  154. Ramalingayya GV, Nampoothiri M, Nayak PG et al (2016) Naringin and rutin alleviates episodic memory deficits in two differentially challenged object recognition tasks. Pharmacogn Mag 12:S63–S70. https://doi.org/10.4103/0973-1296.176104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gorinstein S, Leontowicz H, Leontowicz M et al (2005) Changes in plasma lipid and antioxidant activity in rats as a result of naringin and red grapefruit supplementation. J Agric Food Chem 53:3223–3228. https://doi.org/10.1021/jf058014h

    Article  CAS  PubMed  Google Scholar 

  156. Bai X, Zhang X, Chen L et al (2014) Protective effect of naringenin in experimental ischemic stroke: Down-regulated NOD2, RIP2, NF-κB, MMP-9 and Up-regulated claudin-5 expression. Neurochem Res 39:1405–1415. https://doi.org/10.1007/s11064-014-1326-y

    Article  CAS  PubMed  Google Scholar 

  157. Olugbemide AS, Ben-Azu B, Bakre AG et al (2021) Naringenin improves depressive- and anxiety-like behaviors in mice exposed to repeated hypoxic stress through modulation of oxido-inflammatory mediators and NF-kB/BDNF expressions. Brain Res Bull 169:214–227. https://doi.org/10.1016/j.brainresbull.2020.12.003

    Article  CAS  PubMed  Google Scholar 

  158. Lou H, Jing X, Wei X et al (2014) Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 79:380–388. https://doi.org/10.1016/j.neuropharm.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  159. Xicota L, Rodriguez-Morato J, Dierssen M, de la Torre R (2015) Potential role of (-)-epigallocatechin-3-Gallate (EGCG) in the secondary prevention of Alzheimer disease. Curr Drug Targets 18:174–195. https://doi.org/10.2174/1389450116666150825113655

    Article  CAS  Google Scholar 

  160. Ide K, Matsuoka N, Yamada H et al (2018) Effects of tea catechins on Alzheimer’s disease: Recent updates and perspectives. Molecules. https://doi.org/10.3390/molecules23092357

    Article  PubMed  PubMed Central  Google Scholar 

  161. Rasoolijazi H, Joghataie MT, Roghani M, Nobakht M (2007) The beneficial effect of (-)-epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat: a behavioral analysis. Iran Biomed J 11:237–243

    CAS  PubMed  Google Scholar 

  162. Singh NA, Bhardwaj V, Ravi C et al (2018) EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00244

    Article  PubMed  PubMed Central  Google Scholar 

  163. Marín N, Romero B, Bosch-Morell F et al (2000) β-Amyloid-induced activation of Caspase-3 in primary cultures of rat neurons. Mech Ageing Dev 119:63–67. https://doi.org/10.1016/S0047-6374(00)00172-X

    Article  PubMed  Google Scholar 

  164. Choi YT, Jung CH, Lee SR et al (2001) The green tea polyphenol (-)-epigallocatechin gallate attenuates β-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70:603–614. https://doi.org/10.1016/S0024-3205(01)01438-2

    Article  CAS  PubMed  Google Scholar 

  165. Guéroux M, Fleau C, Slozeck M et al (2017) Epigallocatechin 3-gallate as an inhibitor of tau phosphorylation and aggregation: a molecular and structural insight. J Prev Alzheimer’s Dis 4:218–225. https://doi.org/10.14283/jpad.2017.35

    Article  Google Scholar 

  166. Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Suganuma M, Okabe S, Oniyama M et al (1998) Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19:1771–1776. https://doi.org/10.1093/carcin/19.10.1771

    Article  CAS  PubMed  Google Scholar 

  168. Farkhondeh T, Pourbagher-Shahri A, Ashrafizadeh M et al (2020) Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen Res 15:1792–1798. https://doi.org/10.4103/1673-5374.280300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jiang Z, Zhang J, Cai Y et al (2017) Catechin attenuates traumatic brain injury-induced blood–brain barrier damage and improves longer-term neurological outcomes in rats. Exp Physiol 102:1269–1277. https://doi.org/10.1113/EP086520

    Article  CAS  PubMed  Google Scholar 

  170. Noori T, Dehpour AR, Sureda A et al (2021) Role of natural products for the treatment of Alzheimer’s disease. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2021.173974

    Article  PubMed  Google Scholar 

  171. Suganthy N, Sheeja Malar D, Pandima Devi K (2016) In vitro antiaggregation and deaggregation potential of Rhizophora mucronata and its bioactive compound (+)- catechin against Alzheimer’s beta amyloid peptide (25–35). Neurol Res 38:1041–1051. https://doi.org/10.1080/01616412.2016.1244374

    Article  CAS  PubMed  Google Scholar 

  172. Ahmed ME, Khan MM, Javed H et al (2013) Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem Int 62:492–501

    Article  Google Scholar 

  173. Pomier KM, Ahmed R, Melacini G (2020) Catechins as tools to understand the molecular basis of neurodegeneration. Molecules. https://doi.org/10.3390/molecules25163571

    Article  Google Scholar 

  174. Zhang Z, Wu H, Huang H (2016) Epicatechin plus treadmill exercise are neuroprotective against moderate-stage amyloid precursor protein/presenilin 1 mice. Pharmacogn Mag 12:139. https://doi.org/10.4103/0973-1296.182174

    Article  CAS  Google Scholar 

  175. Zeng YQ, Wang YJ, Zhou XF (2014) Effects of (-)epicatechin on the pathology of APP/PS1 transgenic mice. Front Neurol. https://doi.org/10.3389/fneur.2014.00069

    Article  PubMed  PubMed Central  Google Scholar 

  176. Cox CJ, Choudhry F, Peacey E et al (2015) Dietary (-)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing. Neurobiol Aging 36:178–187. https://doi.org/10.1016/j.neurobiolaging.2014.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Carbonaro M, Di Venere A, Filabozzi A et al (2016) Role of dietary antioxidant (-)-epicatechin in the development of β-lactoglobulin fibrils. Biochim Biophys Acta - Proteins Proteomics 1864:766–772. https://doi.org/10.1016/j.bbapap.2016.03.017

    Article  CAS  Google Scholar 

  178. Dey A, Bhattacharya R, Mukherjee A, Pandey DK (2017) Natural products against Alzheimer’s disease: pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 35:178–216. https://doi.org/10.1016/j.biotechadv.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  179. Tambe R, Patil A, Jain P et al (2017) Assessment of luteolin isolated from eclipta alba leaves in animal models of epilepsy. Pharm Biol 55:264–268. https://doi.org/10.1080/13880209.2016.1260597

    Article  CAS  PubMed  Google Scholar 

  180. Santos G, Giraldez-Alvarez LD, Ávila-Rodriguez M et al (2016) SUR1 receptor interaction with hesperidin and linarin predicts possible mechanisms of action of Valeriana officinalis in Parkinson. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2016.00097

    Article  PubMed  PubMed Central  Google Scholar 

  181. Lee HW, Ryu HW, Kang MG et al (2017) Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi. Int J Biol Macromol 97:598–605. https://doi.org/10.1016/j.ijbiomac.2017.01.080

    Article  CAS  PubMed  Google Scholar 

  182. Kim HG, Ju MS, Ha SK et al (2012) Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol Pharm Bull 35:1287–1294. https://doi.org/10.1248/bpb.b12-00127

    Article  CAS  PubMed  Google Scholar 

  183. Costa SL, Silva VDA, dos Santos SC et al (2016) Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox Res 30:41–52. https://doi.org/10.1007/s12640-016-9600-1

    Article  CAS  PubMed  Google Scholar 

  184. Shal B, Ding W, Ali H et al (2018) Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00548

    Article  PubMed  PubMed Central  Google Scholar 

  185. Chakraborty S, Basu S (2017) Multi-functional activities of citrus flavonoid narirutin in Alzheimer’s disease therapeutics: an integrated screening approach and in vitro validation. Int J Biol Macromol 103:733–743. https://doi.org/10.1016/j.ijbiomac.2017.05.110

    Article  CAS  PubMed  Google Scholar 

  186. Howes MJR, Simmonds MSJ (2014) The role of phytochemicals as micronutrients in health and disease. Curr Opin Clin Nutr Metab Care 17:558–566. https://doi.org/10.1097/MCO.0000000000000115

    Article  CAS  PubMed  Google Scholar 

  187. Larit F, Elokely KM, Chaurasiya ND et al (2018) Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Phytomedicine 40:27–36. https://doi.org/10.1016/j.phymed.2017.12.032

    Article  CAS  PubMed  Google Scholar 

  188. Pohl F, Lin PKT (2018) The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials. Molecules 23:3283. https://doi.org/10.3390/molecules23123283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hussain G, Zhang L, Rasul A et al (2018) Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: an update of recent data. Molecules. https://doi.org/10.3390/molecules23040814

    Article  PubMed  PubMed Central  Google Scholar 

  190. Carmona V, Martín-Aragón S, Goldberg J et al (2020) Several targets involved in Alzheimer’s disease amyloidogenesis are affected by morin and isoquercitrin. Nutr Neurosci 23:575–590. https://doi.org/10.1080/1028415X.2018.1534793

    Article  CAS  PubMed  Google Scholar 

  191. Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76:1191–1201. https://doi.org/10.1093/ajcn/76.6.1191

    Article  CAS  PubMed  Google Scholar 

  192. Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446. https://doi.org/10.1016/S0891-5849(00)00498-6

    Article  CAS  PubMed  Google Scholar 

  193. Prakash D, Sudhandiran G (2015) Dietary flavonoid fisetin regulates aluminium chloride-induced neuronal apoptosis in cortex and hippocampus of mice brain. J Nutr Biochem 26:1527–1539. https://doi.org/10.1016/j.jnutbio.2015.07.017

    Article  CAS  PubMed  Google Scholar 

  194. Elufioye TO, Berida TI, Habtemariam S (2017) Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evidence-based Complement Altern Med. https://doi.org/10.1155/2017/3574012

    Article  Google Scholar 

  195. Hamuel J (2012) Phytochemicals: extraction methods basic, structures and mode of action as potential chemotherapeutic agents. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  196. Tarozzi A, Morroni F, Merlicco A et al (2010) Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. Neurosci Lett 473:72–76

    Article  CAS  PubMed  Google Scholar 

  197. Hämäläinen M, Nieminen R, Vuorela P et al (2007) Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on i. Mediators Inflamm. https://doi.org/10.1155/2007/45673

    Article  PubMed  PubMed Central  Google Scholar 

  198. Alía M, Ramos S, Mateos R et al (2006) Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Appl Pharmacol 212:110–118. https://doi.org/10.1016/j.taap.2005.07.014

    Article  CAS  PubMed  Google Scholar 

  199. Mani RJ, Mittal K, Katare DP (2018) Protective effects of quercetin in Zebrafish model of Alzheimer’s disease. Asian J Pharm 12:S660–S666

    CAS  Google Scholar 

  200. Rifaai RA, Mokhemer SA, Saber EA et al (2020) Neuroprotective effect of quercetin nanoparticles: a possible prophylactic and therapeutic role in Alzheimer’s disease. J Chem Neuroanat. https://doi.org/10.1016/j.jchemneu.2020.101795

    Article  PubMed  Google Scholar 

  201. Zhang X-W, Chen J-Y, Ouyang D, Lu J-H (2020) Quercetin in animal models of Alzheimer’s disease: a systematic review of preclinical studies. Int J Mol Sci 21:493

    Article  PubMed  PubMed Central  Google Scholar 

  202. Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR et al (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145. https://doi.org/10.1016/j.neuropharm.2015.01.027

    Article  CAS  PubMed  Google Scholar 

  203. Yu X, Li Y, Mu X (2020) Effect of quercetin on PC12 Alzheimer’s disease cell model induced by A β 25–35 and its mechanism based on Sirtuin1/Nrf2/HO-1 Pathway. Biomed Res Int. https://doi.org/10.1155/2020/8210578

    Article  PubMed  PubMed Central  Google Scholar 

  204. Dal Belo CA, Lucho APDB, Vinadé L et al (2013) In vitro antiophidian mechanisms of Hypericum brasiliense choisy standardized extract: quercetin-dependent neuroprotection. Biomed Res Int. https://doi.org/10.1155/2013/943520

    Article  Google Scholar 

  205. Khan H, Ullah H, Aschner M et al (2020) Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules. https://doi.org/10.3390/biom10010059

    Article  PubMed  PubMed Central  Google Scholar 

  206. Paula PC, Maria SGA, Luis CH, Patricia CGG (2019) Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model. Molecules. https://doi.org/10.3390/molecules24122287

    Article  PubMed  PubMed Central  Google Scholar 

  207. Somerset SM, Johannot L (2008) Dietary flavonoid sources in Australian adults. Nutr Cancer 60:442–449. https://doi.org/10.1080/01635580802143836

    Article  CAS  PubMed  Google Scholar 

  208. Zuk M, Kulma A, Dymińska L et al (2012) Correction: flavonoid engineering of flax potentiate its biotechnological application. BMC Biotechnol. https://doi.org/10.1186/1472-6750-12-47

    Article  PubMed Central  Google Scholar 

  209. Schroeter H, Williams RJ, Matin R et al (2000) Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med 29:1222–1233. https://doi.org/10.1016/S0891-5849(00)00415-9

    Article  CAS  PubMed  Google Scholar 

  210. Schroeter H, Spencer JPE, Rice-Evans C, Williams RJ (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358:547–557. https://doi.org/10.1042/0264-6021:3580547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Filomeni G, Graziani I, de Zio D et al (2012) Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 33:767–785. https://doi.org/10.1016/j.neurobiolaging.2010.05.021

    Article  CAS  PubMed  Google Scholar 

  212. Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 5:677–687. https://doi.org/10.1016/S1474-4422(06)70521-X

    Article  CAS  PubMed  Google Scholar 

  213. Akaishi T, Morimoto T, Shibao M et al (2008) Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid β protein. Neurosci Lett 444:280–285. https://doi.org/10.1016/j.neulet.2008.08.052

    Article  CAS  PubMed  Google Scholar 

  214. Ahmad A, Ali T, Park HY et al (2017) Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 54:2269–2285. https://doi.org/10.1007/s12035-016-9795-4

    Article  CAS  PubMed  Google Scholar 

  215. Xu PX, Wang SW, Yu XL et al (2014) Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 264:173–180. https://doi.org/10.1016/j.bbr.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  216. Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S (2011) Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 89:939–945. https://doi.org/10.1016/j.lfs.2011.09.023

    Article  CAS  PubMed  Google Scholar 

  217. Rahman M, Majumder S, Akter F, et al (2021) Pre-clinical investigation of analgesic, anti-diarrheal and CNS depressant effect of Pterocarpus indicus in Swiss albino mice. JournalsJuEduJo

  218. Semwal DK, Semwal RB, Combrinck S, Viljoen A (2016) Myricetin: a dietary molecule with diverse biological activities. Nutrients. https://doi.org/10.3390/nu8020090

    Article  PubMed  PubMed Central  Google Scholar 

  219. Fiori J, Naldi M, Bartolini M, Andrisano V (2012) Disclosure of a fundamental clue for the elucidation of the myricetin mechanism of action as amyloid aggregation inhibitor by mass spectrometry. Electrophoresis 33:3380–3386. https://doi.org/10.1002/elps.201200186

    Article  CAS  PubMed  Google Scholar 

  220. Shimmyo Y, Kihara T, Akaike A et al (2008) Multifunction of myricetin on Aβ: Neuroprotection via a conformational change of Aβ and reduction of Aβ via the interference of secretases. J Neurosci Res 86:368–377. https://doi.org/10.1002/jnr.21476

    Article  CAS  PubMed  Google Scholar 

  221. Ono K, Yoshiike Y, Takashima A et al (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87:172–181. https://doi.org/10.1046/j.1471-4159.2003.01976.x

    Article  CAS  PubMed  Google Scholar 

  222. Ramezani M, Darbandi N, Khodagholi F, Hashemi A (2016) Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer’s disease. Neural Regen Res 11:1976–1980. https://doi.org/10.4103/1673-5374.197141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Heeba GH, Mahmoud ME (2014) Therapeutic potential of morin against liver fibrosis in rats: modulation of oxidative stress, cytokine production and nuclear factor kappa B. Environ Toxicol Pharmacol 37:662–671. https://doi.org/10.1016/j.etap.2014.01.026

    Article  CAS  PubMed  Google Scholar 

  224. Rattanachaikunsopon P, Phumkhachorn P (2010) Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava. J Med Plants Res 4:393–396. https://doi.org/10.5897/JMPR09.485

    Article  CAS  Google Scholar 

  225. Shimmyo Y, Kihara T, Akaike A et al (2008) Flavonols and flavones as BACE-1 inhibitors: Structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta - Gen Subj 1780:819–825. https://doi.org/10.1016/j.bbagen.2008.01.017

    Article  CAS  Google Scholar 

  226. Gong EJ, Park HR, Kim ME et al (2011) Morin attenuates tau hyperphosphorylation by inhibiting GSK3β. Neurobiol Dis 44:223–230. https://doi.org/10.1016/j.nbd.2011.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Asano N, Yamashita T, Yasuda K et al (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49:4208–4213. https://doi.org/10.1021/jf010567e

    Article  CAS  PubMed  Google Scholar 

  228. Tarozzi A, Merlicco A, Morroni F et al (2008) Cyanidin 3-O-glucopyranoside protects and rescues SH-SY5Ycells against amyloid-beta peptide-induced toxicity. NeuroReport 19:1483–1486. https://doi.org/10.1097/WNR.0b013e32830fe4b8

    Article  CAS  PubMed  Google Scholar 

  229. Shin WH, Park SJ, Kim EJ (2006) Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sci 79:130–137. https://doi.org/10.1016/j.lfs.2005.12.033

    Article  CAS  PubMed  Google Scholar 

  230. Tarozzi A, Morroni F, Hrelia S et al (2007) Neuroprotective effects of anthocyanins and their in vivo metabolites in SH-SY5Y cells. Neurosci Lett 424:36–40. https://doi.org/10.1016/j.neulet.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  231. Thummayot S, Tocharus C, Suksamrarn A, Tocharus J (2016) Neuroprotective effects of cyanidin against Aβ-induced oxidative and ER stress in SK-N-SH cells. Neurochem Int 101:15–21. https://doi.org/10.1016/j.neuint.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  232. Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x

    Article  CAS  PubMed  Google Scholar 

  233. Rauk A (2008) Why is the amyloid beta peptide of Alzheimer’s disease neurotoxic? Dalt Trans 2008:1273–1282. https://doi.org/10.1039/b718601k

    Article  CAS  Google Scholar 

  234. Andres-Lacueva C, Shukitt-Hale B, Galli RL et al (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8:111–120. https://doi.org/10.1080/10284150500078117

    Article  CAS  PubMed  Google Scholar 

  235. Sohanaki H, Baluchnejadmojarad T, Nikbakht F, Roghani M (2016) Pelargonidin improves passive avoidance task performance in a rat amyloid beta25-35 model of Alzheimer’s disease via estrogen receptor independent pathways. Acta Med Iran 54:245–250

    PubMed  Google Scholar 

  236. Carkeet C, Clevidence BA, Novotny JA (2008) Anthocyanin excretion by humans increases linearly with increasing strawberry dose. J Nutr 138:897–902. https://doi.org/10.1093/jn/138.5.897

    Article  CAS  PubMed  Google Scholar 

  237. Spencer JPE (2008) Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc 67:238–252

    Article  CAS  PubMed  Google Scholar 

  238. Nabavi SF, Habtemariam S, Daglia M et al (2014) Anthocyanins as a potential therapy for diabetic retinopathy. Curr Med Chem 22:51–58. https://doi.org/10.2174/0929867321666140815123852

    Article  CAS  Google Scholar 

  239. Rechner AR, Kroner C (2005) Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thromb Res 116:327–334. https://doi.org/10.1016/j.thromres.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  240. Chakrabarti M, Haque A, Banik NL et al (2014) Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 109:22–31. https://doi.org/10.1016/j.brainresbull.2014.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Onozuka H, Nakajima A, Matsuzaki K et al (2008) Nobiletin, a citrus flavonoid, improves memory impairment and Aβ pathology in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 326:739–744. https://doi.org/10.1124/jpet.108.140293

    Article  CAS  PubMed  Google Scholar 

  242. Nakajima A, Ohizumi Y (2019) Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int J Mol Sci 20:3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Chai W, Zhang J, Xiang Z et al (2022) Potential of nobiletin against Alzheimer’s disease through inhibiting neuroinflammation. Metab Brain Dis 37:1145–1154

    Article  CAS  PubMed  Google Scholar 

  244. Yiannopoulou KG, Papageorgiou SG (2012) Current and future treatments for Alzheimer’s disease. Therapeutic advances in neurological disorders. Ther Adv Neurol Disord. 6(1):19

    Article  Google Scholar 

  245. Sharma K (2019) Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep 20:1479–1487. https://doi.org/10.3892/mmr.2019.10374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Deardorff WJ, Feen E, Grossberg GT (2015) The use of cholinesterase inhibitors across all stages of Alzheimer’s disease. Drugs Aging 32:537–547. https://doi.org/10.1007/s40266-015-0273-x

    Article  CAS  PubMed  Google Scholar 

  247. Brady R, Weinman J (2013) Adherence to cholinesterase inhibitors in Alzheimer’s disease: a review. Dement Geriatr Cogn Disord 35:351–363. https://doi.org/10.1159/000347140

    Article  CAS  PubMed  Google Scholar 

  248. Hong-Qi Y, Zhi-Kun S, Sheng-Di C (2012) Current advances in the treatment of Alzheimer’s disease: focused on considerations targeting Aβ and tau. Transl Neurodegener 1:1–12

    Article  Google Scholar 

  249. Zhu Y, Wang J (2015) Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: potential drug to treat Alzheimer’s disease. Neurol Sci 36:1181–1188. https://doi.org/10.1007/s10072-015-2070-z

    Article  PubMed  Google Scholar 

  250. Esparza TJ, Wildburger NC, Jiang H et al (2016) Soluble amyloid-beta aggregates from human Alzheimer’s disease brains. Sci Rep. https://doi.org/10.1038/srep38187

    Article  PubMed  PubMed Central  Google Scholar 

  251. Guix FX, Dotti CG (2018) Could blocking the formation of amyloid channels rescue Alzheimer’s phenotype? EMBO Mol Med 10:7–9. https://doi.org/10.15252/emmm.201708491

    Article  CAS  PubMed  Google Scholar 

  252. Diamond DM, Campbell AM, Park CR et al (2007) The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast. https://doi.org/10.1155/2007/60803

    Article  PubMed  PubMed Central  Google Scholar 

  253. Adewusi EA, Steenkamp V (2015) Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. Asian Pacific J Trop Dis 5:430–440. https://doi.org/10.1016/S2222-1808(15)60810-6

    Article  CAS  Google Scholar 

  254. Kumar A, Pate KM, Moss MA et al (2014) Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease. PLoS One. https://doi.org/10.1371/journal.pone.0111492

    Article  PubMed  PubMed Central  Google Scholar 

  255. Jokar S, Khazaei S, Behnammanesh H et al (2019) Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy. Biophys Rev 11:901–925. https://doi.org/10.1007/s12551-019-00606-2

    Article  CAS  Google Scholar 

  256. Boutajangout A, Sigurdsson E, Krishnamurthy P (2011) Tau as a therapeutic target for Alzheimer’s disease. Curr Alzheimer Res 8:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Iqbal K, Del C, Alonso A, Chen S et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta - Mol Basis Dis 1739:198–210. https://doi.org/10.1016/j.bbadis.2004.09.008

    Article  CAS  Google Scholar 

  258. Kadavath H, Hofele RV, Biernat J et al (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci U S A 112:7501–7506. https://doi.org/10.1073/pnas.1504081112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Prezel E, Elie A, Delaroche J et al (2018) Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles. Mol Biol Cell 29:154–165. https://doi.org/10.1091/mbc.e17-06-0429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Madav Y, Wairkar S, Prabhakar B (2019) Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease. Brain Res Bull 146:171–184. https://doi.org/10.1016/j.brainresbull.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  261. Neugroschl J, Sano M (2010) Current treatment and recent clinical research in Alzheimer’s disease. Mt Sinai J Med 77:3–16. https://doi.org/10.1002/msj.20165

    Article  PubMed  PubMed Central  Google Scholar 

  262. Wischik CM, Harrington CR, Storey JMD (2014) Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol 88:529–539. https://doi.org/10.1016/j.bcp.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  263. Barone E, Di Domenico F, Butterfield DA (2014) Statins more than cholesterol lowering agents in Alzheimer disease: their pleiotropic functions as potential therapeutic targets. Biochem Pharmacol 88:605–616. https://doi.org/10.1016/j.bcp.2013.10.030

    Article  CAS  PubMed  Google Scholar 

  264. Sivaraman D, Anbu N, Kabilan N et al (2019) Review on current treatment strategy in Alzheimer’s disease and role of herbs in treating neurological disorders. Int J Trans Res Ind Med 1:33–43

    Google Scholar 

  265. Maulik M, Westaway D, Jhamandas JH, Kar S (2013) Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol Neurobiol 47:37–63. https://doi.org/10.1007/s12035-012-8337-y

    Article  CAS  PubMed  Google Scholar 

  266. Daneschvar HL, Aronson MD, Smetana GW (2015) Do statins prevent Alzheimer’s disease? A narrative review. Eur J Intern Med 26:666–669. https://doi.org/10.1016/j.ejim.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  267. Refolo LM, Pappolla MA, LaFrancois J et al (2001) A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 8:890–899. https://doi.org/10.1006/nbdi.2001.0422

    Article  CAS  PubMed  Google Scholar 

  268. Li R, Cui J, Shen Y (2014) Brain sex matters: estrogen in cognition and Alzheimer’s disease. Mol Cell Endocrinol 389:13–21. https://doi.org/10.1016/j.mce.2013.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Merlo S, Spampinato SF, Sortino MA (2017) Estrogen and Alzheimer’s disease: still an attractive topic despite disappointment from early clinical results. Eur J Pharmacol 817:51–58. https://doi.org/10.1016/j.ejphar.2017.05.059

    Article  CAS  PubMed  Google Scholar 

  270. Lan YL, Zhao J, Li S (2014) Update on the neuroprotective effect of estrogen receptor alpha against Alzheimer’s disease. J Alzheimer’s Dis 43:1137–1148. https://doi.org/10.3233/JAD-141875

    Article  CAS  Google Scholar 

  271. Grimm A, Lim YA, Mensah-Nyagan AG et al (2012) Alzheimer’s disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 46:151–160. https://doi.org/10.1007/s12035-012-8281-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Nurk E, Refsum H, Drevon CA et al (2009) Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance1-3. J Nutr 139:120–127. https://doi.org/10.3945/jn.108.095182

    Article  CAS  PubMed  Google Scholar 

  273. Butchart C, Kyle J, McNeill G et al (2011) Flavonoid intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. Br J Nutr 106:141–148. https://doi.org/10.1017/S0007114510005738

    Article  CAS  PubMed  Google Scholar 

  274. Commenges D, Scotet V, Renaud S et al (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363. https://doi.org/10.1023/A:1007614613771

    Article  CAS  PubMed  Google Scholar 

  275. Sokolov AN, Pavlova MA, Klosterhalfen S, Enck P (2013) Chocolate and the brain: Neurobiological impact of cocoa flavanols on cognition and behavior. Neurosci Biobehav Rev 37:2445–2453. https://doi.org/10.1016/j.neubiorev.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  276. Crichton GE, Elias MF, Alkerwi A (2016) Chocolate intake is associated with better cognitive function: the maine-syracuse longitudinal study. Appetite 100:126–132. https://doi.org/10.1016/j.appet.2016.02.010

    Article  PubMed  Google Scholar 

  277. Calabrò RS, De Cola MC, Gervasi G et al (2019) The efficacy of cocoa polyphenols in the treatment of mild cognitive impairment: a retrospective study. Med 55:156. https://doi.org/10.3390/medicina55050156

    Article  Google Scholar 

  278. Moreira A, Diógenes MJ, De Mendonça A et al (2016) Chocolate consumption is associated with a lower risk of cognitive decline. J Alzheimer’s Dis 53:85–93. https://doi.org/10.3233/JAD-160142

    Article  Google Scholar 

  279. Scholey AB, French SJ, Morris PJ et al (2010) Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol 24:1505–1514. https://doi.org/10.1177/0269881109106923

    Article  CAS  PubMed  Google Scholar 

  280. Field DT, Williams CM, Butler LT (2011) Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav 103:255–260. https://doi.org/10.1016/j.physbeh.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  281. Brickman AM, Khan UA, Provenzano FA et al (2014) Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci 17:1798–1803. https://doi.org/10.1038/nn.3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Mastroiacovo D, Kwik-Uribe C, Grassi D et al (2015) Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the cocoa, cognition, and aging (CoCoA) study-A randomized controlled trial. Am J Clin Nutr 101:538–548. https://doi.org/10.3945/ajcn.114.092189

    Article  CAS  PubMed  Google Scholar 

  283. Desideri G, Kwik-Uribe C, Grassi D et al (2012) Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: the cocoa, cognition, and aging (CoCoA) study. Hypertension 60:794–801. https://doi.org/10.1161/HYPERTENSIONAHA.112.193060

    Article  CAS  PubMed  Google Scholar 

  284. Miller MG, Hamilton DA, Joseph JA, Shukitt-Hale B (2018) Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur J Nutr 57:1169–1180. https://doi.org/10.1007/s00394-017-1400-8

    Article  CAS  PubMed  Google Scholar 

  285. Bowtell JL, Aboo-Bakkar Z, Conway ME et al (2017) Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab 42:773–779. https://doi.org/10.1139/apnm-2016-0550

    Article  CAS  PubMed  Google Scholar 

  286. Krikorian R, Shidler MD, Nash TA et al (2010) Blueberry supplementation improves memory in older adults. J Agric Food Chem 58:3996–4000. https://doi.org/10.1021/jf9029332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Boespflug EL, Eliassen JC, Dudley JA et al (2018) Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci 21:297–305. https://doi.org/10.1080/1028415X.2017.1287833

    Article  CAS  PubMed  Google Scholar 

  288. McNamara RK, Kalt W, Shidler MD et al (2018) Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging 64:147–156. https://doi.org/10.1016/j.neurobiolaging.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  289. Krikorian R, Nash TA, Shidler MD et al (2010) Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr 103:730–734. https://doi.org/10.1017/S0007114509992364

    Article  CAS  PubMed  Google Scholar 

  290. Kean RJ, Lamport DJ, Dodd GF et al (2015) Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: An 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am J Clin Nutr 101:506–514. https://doi.org/10.3945/ajcn.114.088518

    Article  CAS  PubMed  Google Scholar 

  291. Bookheimer SY, Renner BA, Ekstrom A et al (2013) Pomegranate juice augments memory and fMRI activity in middle-aged and older adults with mild memory complaints. Evidence-based Complement Altern Med. https://doi.org/10.1155/2013/946298

    Article  Google Scholar 

  292. Nilsson A, Salo I, Plaza M, Björck I (2017) Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; a randomized cross-over study in healthy older adults. PLoS ONE 12:e0188173. https://doi.org/10.1371/journal.pone.0188173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Alharbi MH, Lamport DJ, Dodd GF et al (2016) Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur J Nutr 55:2021–2029. https://doi.org/10.1007/s00394-015-1016-9

    Article  CAS  PubMed  Google Scholar 

  294. Lamport DJ, Pal D, Macready AL et al (2016) The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: an acute, randomised, placebo-controlled cross-over trial in healthy, young adults. Br J Nutr 116:2160–2168. https://doi.org/10.1017/S000711451600430X

    Article  CAS  PubMed  Google Scholar 

  295. Kritz-Silverstein D, Von Mühlen D, Barrett-Connor E, Bressel MAB (2003) Isoflavones and cognitive function in older women: the SOy and postmenopausal health in aging (SOPHIA) study. Menopause 10:196–202. https://doi.org/10.1097/00042192-200310030-00004

    Article  PubMed  Google Scholar 

  296. File SE, Hartley DE, Elsabagh S et al (2005) Cognitive improvement after 6 weeks of soy supplements in postmenopausal women is limited to frontal lobe function. Menopause 12:193–201. https://doi.org/10.1097/00042192-200512020-00014

    Article  PubMed  Google Scholar 

  297. Baba Y, Inagaki S, Nakagawa S et al (2020) Effect of daily intake of green tea catechins on cognitive function in middle-aged and older subjects: a randomized, placebo-controlled study. Molecules. https://doi.org/10.3390/molecules25184265

    Article  PubMed  PubMed Central  Google Scholar 

  298. Santos-Galduróz RF, Galduróz JCF, Facco RL et al (2010) Effects of isoflavone on the learning and memory of women in menopause: a double-blind placebo-controlled study. Brazilian J Med Biol Res 43:1123–1126. https://doi.org/10.1590/S0100-879X2010007500104

    Article  Google Scholar 

  299. Duffy R, Wiseman H, File SE (2003) Improved cognitive function in postmenopausal women after 12 weeks of consumption of a soya extract containing isoflavones. Pharmacol Biochem Behav 75:721–729. https://doi.org/10.1016/S0091-3057(03)00116-3

    Article  CAS  PubMed  Google Scholar 

  300. Wightman EL, Haskell CF, Forster JS et al (2012) Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum Psychopharmacol 27:177–186. https://doi.org/10.1002/hup.1263

    Article  CAS  PubMed  Google Scholar 

  301. Ide K, Yamada H, Takuma N et al (2014) Green tea consumption affects cognitive dysfunction in the elderly: a pilot study. Nutrients 6:4032–4042. https://doi.org/10.3390/nu6104032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Pase MP, Scholey AB, Pipingas A et al (2013) Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. J Psychopharmacol 27:451–458. https://doi.org/10.1177/0269881112473791

    Article  CAS  PubMed  Google Scholar 

  303. Kreijkamp-Kaspers S, Kok L, Grobbee DE et al (2007) Dietary phytoestrogen intake and cognitive function in older women. Journals Gerontol - Ser A Biol Sci Med Sci 62:556–562. https://doi.org/10.1093/gerona/62.5.556

    Article  Google Scholar 

  304. Nooyens ACJ, Milder IEJ, Van Gelder BM et al (2015) Diet and cognitive decline at middle age: the role of antioxidants. Br J Nutr 113:1410–1417. https://doi.org/10.1017/S0007114515000720

    Article  CAS  PubMed  Google Scholar 

  305. Prasanna P, Upadhyay A (2021) Flavonoid-based nanomedicines in Alzheimer’s disease therapeutics: promises made, a long way to go. ACS Pharmacol Transl Sci 4:74–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Uddin MS, Kabir MT, Niaz K et al (2020) Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules 25:1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia, for financially supporting this work through the Large Research Group Project under Grant no. R.G.P.2/557/44.

Funding

The authors received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to preparing this manuscript, and all authors have read and agreed to the published version.

Corresponding author

Correspondence to Talha Bin Emran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Amin, M., Dehbia, Z., Nafady, M.H. et al. Flavonoids and Alzheimer’s disease: reviewing the evidence for neuroprotective potential. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-023-04922-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04922-w

Keywords

Navigation