Skip to main content

Advertisement

Log in

Degradation of crude oil-associated polycyclic aromatic hydrocarbons by marine-derived fungi

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

One of the major environmental concerns today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Crude oil is a complex mixture of hydrocarbons like alkanes, naphthene and polycyclic aromatic hydrocarbons (PAHs). PAHs are known to be highly toxic to humans and animals due to their carcinogenic and mutagenic effects. PAHs are environmentally recalcitrant due to their hydrophobicity which makes them difficult to degrade, thus making them persistent environmental contaminants. The mechanical and chemical methods in practice currently to remove hydrocarbon contaminants have limited effectiveness and are expensive. Bioremediation is a cost-effective technology for treating hydrocarbon-contaminated sites as it results in the complete mineralisation of the pollutant. This study demonstrates the degradation of crude oil and associated PAHs using ten fungal cultures isolated from the aquatic environment. The current study reported a 98.6% and 92.9% reduction in total PAHs in crude oil by Fusarium species, i.e. isolate NIOSN-T4 and NIOSN-T5, respectively. The fungal isolate, NIOSN-T4, identified as Fusarium equiseti, showed maximum PAH degradation efficiency of LMW PAHs 97.8%. NIOSN-M126, identified as Penicillium citrinum, exhibited a 100% removal of HMW PAHs. Microorganisms possess an untapped potential for various applications in biotechnology, and the current study demonstrated the potential of marine fungi for use in the bioremediation of xenobiotic hydrocarbons in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petroleum 25(1):107–123

    Article  Google Scholar 

  • Agrawal N, Shahi SK (2017) Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. Int Biodet Biodegrad 122:69–81

    Article  CAS  Google Scholar 

  • Agrawal N, Verma P, Shahi SK (2018) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresour Bioprocess 5(1):1–9

    Article  Google Scholar 

  • Ahearn DG, Meyers SP (1972) The role of fungi in the decomposition of hydrocarbons in the marine environment. Biodet Materials 2:12–18

    Google Scholar 

  • Álvarez-Barragán J, Cravo-Laureau C, Wick LY, Duran R (2021) Fungi in PAH-contaminated marine sediments: cultivable diversity and tolerance capacity towards PAH. Mar Poll Bull 164:112082

    Article  Google Scholar 

  • Bankole PO, Semple KT, Jeon BH, Govindwar SP (2021) Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis strain bpo1 using response surface methodology. Ecotoxicol Environ Safety 208:111619

    Article  CAS  PubMed  Google Scholar 

  • Barnes NM, Khodse VB, Lotlikar NP, Meena RM, Damare SR (2018) Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech 8(1):21

    Article  PubMed  Google Scholar 

  • Bezalel LEA, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(7):2547–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MR, Vieira GA, Lopes VC, Mainardi PH, Dos Santos JA, de Azevedo DL, Otero IV, da Silva Yoshida AM, Feitosa VA (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralisation of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE, Sutherland JB (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. Br Mycol Soc Symp Ser 23:136–187

    CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin Heidelberg, pp 2079–2110

    Chapter  Google Scholar 

  • Cerniglia CE, Kelly DW, Freeman JP, Miller DW (1986) Microbial metabolism of pyrene. Chemico-biological. Interactions 57(2):203–216

    CAS  Google Scholar 

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40(6):814–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu W, Xu M, Sun K, Hu L, Cao W, Dai C, Jia Y (2018) Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo. Chemosphere 203:160–169

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Du L, Yang J, Wu WM, Liang H (2010) A critical review of the application of white rot fungus to environmental pollution control. Critical Rev Biotechnol 30(1):70–77

    Article  CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • González-Abradelo D, Pérez-Llano Y, Peidro-Guzmán H, del Rayo Sánchez-Carbente M, Folch-Mallol JL, Aranda E, Batista-García RA (2019) First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Biores Technol 279:287–296

    Article  Google Scholar 

  • Hadibarata T, Tachibana S, Itoh K (2007) Biodegradation of phenanthrene by fungi screened from nature. Pak J Biol Sci 10(15):2535–2543

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T, Kristanti RA, Bilal M, Al-Mohaimeed AM, Chen TW, Lam MK (2022) Microbial degradation and transformation of benzo [a] pyrene by using a white-rot fungus Pleurotus eryngii F032. Chemosphere 307:136014

    Article  CAS  PubMed  Google Scholar 

  • Juhasz AL, Smith E, Waller N, Stewart R, Weber J (2010) Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Env Pollut 158(2):585–591

    Article  CAS  Google Scholar 

  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Article  CAS  Google Scholar 

  • Kerr JM, Melton HR, McMillen SJ, Magaw RI, Naughton G (1999) Polyaromatic hydrocarbon content in crude oils around the World. In: SPE/EPA exploration and production environmental conference, Texas

  • Khan MI, Cheema SA, Shen C, Zhang C, Tang X, Shi J, Chen X, Park J, Chen Y (2012) Assessment of phenanthrene bioavailability in aged and unaged soils by mild extraction. Env Mon Assess 184:549–559

    Article  CAS  Google Scholar 

  • Khandelwal A, Nain L, Singh SB, Varghese E, Sharma A, Gupta S, Singh N (2021) Bacteria and fungi mediated degradation of poly aromatic hydrocarbons and effect of surfactant Tween-80. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.2015584

    Article  Google Scholar 

  • Kiehlmann E, Pinto L, Moore M (1996) The biotransformation of chrysene to trans-1, 2-dihydroxy-1, 2-dihydrochrysene by filamentous fungi. Can J Microbiol 42(6):604–608

    Article  CAS  Google Scholar 

  • Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2008) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mat 150(1):21–26

    Article  CAS  Google Scholar 

  • Mahajan M, Manek D, Vora N, Kothari RK, Mootapally C, Nathani NM (2021) Fungi with high ability to crunch multiple polycyclic aromatic hydrocarbons (PAHs) from the pelagic sediments of Gulf of Gujarat. Mar Pollut Bull 167:112293

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Guan W (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric Scand Sect B Soil Plant Sci 66(5):399–405

    CAS  Google Scholar 

  • Márquez-Rocha FJ, Olmos-Soto J, Rosano-Hernández MC, Muriel-García M (2005) Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates. Int Biodet Biodegrad 55:17–23

    Article  Google Scholar 

  • Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S (2015) Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycyc Aromat Comp 35(1):120–128

    Article  CAS  Google Scholar 

  • Mollea C, Bosco F, Ruggeri B (2005) Fungal biodegradation of naphthalene: microcosms studies. Chemosphere 60(5):636–643

    Article  CAS  PubMed  Google Scholar 

  • Morales P, C´aceres M, Scott F, Díaz-Robles L, Aroca G, Vergara-Fern´andez A (2017) Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani. Appl Microbiol Biotechnol 101:6765–6777

    Article  CAS  PubMed  Google Scholar 

  • Nam K, Rodriguez W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Orsi W, Biddle JF, Edgcomb V (2013) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. Plos one 8(2):e56335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pampanin DM, Sydnes MO (2013) Polycyclic aromatic hydrocarbons a constituent of petroleum: presence and influence in the aquatic environment. Hydrocarbon 5:83–118

    Google Scholar 

  • Park H, Min B, Jang Y, Kim J, Lipzen A, Sharma A, Choi IG (2019) Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613. Appl Microbiol Biotechnol 103(19):8145–8155

    Article  CAS  PubMed  Google Scholar 

  • Rafin C, Potin O, Veignie E, Sahraoui ALH, Sancholle M (2000) Degradation of benzo [a] pyrene as a sole carbon source by a non-white rot fungus, Fusarium solani. Polycyc Arom Comp 21:311–330

    Article  CAS  Google Scholar 

  • Raghukumar C, Shailaja MS, Parameswaran PS, Singh S (2006) Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC 312: involvement of lignin-degrading enzymes and exopolysaccharides. Ind Jour Mar Sci 35(4):373–379

    CAS  Google Scholar 

  • Reyes-César A, Absalón ÁE, Fernández FJ, González JM, Cortés-Espinosa DV (2014) Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microbiol Biotechnol 30(3):999–1009

    Article  PubMed  Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210(2):227–232

    Article  CAS  PubMed  Google Scholar 

  • Sverdrup LE, Krogh PH, Nielsen T, Kjær C, Stenersen J (2003) Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere 53(8):993–1003

    Article  CAS  PubMed  Google Scholar 

  • Tišma M, Zelić B, Vasić-Rački Đ (2010) White-rot fungi in phenols, dyes and other xenobiotics treatment–a brief review. Croat J Food Sci Technol 2(2):34–47

    Google Scholar 

  • Trincone A (2010) Potential biocatalysts originating from sea environments. J Mol Catalysis B: Enzymatic 66(3–4):241–256

    Article  CAS  Google Scholar 

  • US EPA (2007) United States Environmental Protection Agency.

  • Wang X, Gong Z, Li P, Zhang L, Hu X (2008) Degradation of pyrene and benzo (a) pyrene in contaminated soil by immobilized fungi. Environ Eng Sci 25(5):677–684

    Article  Google Scholar 

  • Wu YR, Luo ZH, Vrijmoed LLP (2010) Biodegradation of anthracene and benz [a] anthracene by two Fusarium solani strains isolated from mangrove sediments. Biores Technol 101(24):9666–9672

    Article  CAS  Google Scholar 

  • Wulandari R, Lotrakul P, Punnapayak H, Amirta R, Kim SW, Prasongsuk S (2021) Toxicity evaluation and biodegradation of phenanthrene by laccase from Trametes polyzona PBURU 12. 3 Biotech 11:1–11

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director CSIR-National Institute of Oceanography for providing all the facilities and infrastructure required to carry out this work. We acknowledge the funding from CSIR under project BSC0111 and from DBT, Govt. of India, under project GAP3297. The third author is thankful to CSIR for her Research Fellowship (18/12/2016(ii) EU-V). The last author is thankful to CSIR for her Research Fellowship (18/12/2011(ii) EU-V). The authors appreciate the critical suggestions from anonymous reviewers that helped improve the manuscript. This is NIO contribution no.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author planned the work. The fungal cultures were isolated and identified by the last author as a part of her doctoral work. The first author carried out all the experimental work. The first, third and fourth authors carried out the GC–MS analysis. The first and corresponding authors wrote the manuscript, and all authors contributed towards improvising the manuscript.

Corresponding author

Correspondence to Samir R. Damare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Research involving human participants and/or animals

Not applicable to this manuscript.

Informed consent

Not applicable to this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 366 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnes, N.M., Damare, S.R., Bhatawadekar, V.C. et al. Degradation of crude oil-associated polycyclic aromatic hydrocarbons by marine-derived fungi. 3 Biotech 13, 335 (2023). https://doi.org/10.1007/s13205-023-03753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03753-2

Keywords

Navigation