Skip to main content

Advertisement

Log in

In vitro and in silico cholinesterase inhibitory potential of metabolites from Laurencia snackeyi (Weber-van Bosse) M. Masuda

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease that causes deterioration in intelligence and psychological activities. Yet, till today, no cure is available for AD. The marine environment is an important sink of bioactive compounds with neuroprotective potential with reduced adverse effects. Recently, we collected the red algae Laurencia snackeyi from Terumbu Island, Malaysia which is known to be rich in halogenated metabolites making it the most sought-after red algae for pharmaceutical studies. The red alga was identified based on basic morphological characteristics, microscopic observation and chemical data from literature. The purplish-brown algae was confirmed a new record. In Malaysia, this species is poorly documented in Peninsular Malaysia as compared to its eastern continent Borneo. Thus, this study intended to investigate the diversity of secondary metabolites present in the alga and its cholinesterase inhibiting potential for AD. The extract inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of  14.45 ± 0.34 \(\upmu\)g mL-1 and 39.59 ± 0.24 \(\upmu\)g mL-1, respectively. Subsequently, we isolated the synderanes, palisadin A (1), aplysistatin (2) and 5-acetoxypalisadin B (3) that was not exhibit potential. Mass spectrometry analysis detected at total of 33 additional metabolites. The computational aided molecular docking using the AChE and BChE receptors on all metabolites shortlisted 5,8,11,14-eicosatetraynoic acid (31) and 15-hydroxy-1-[2-(hydroxymethyl)-1-piperidinyl]prost-13-ene-1,9-dione (42) with best inhibitory properties, respectively with the lowest optimal combination of S-score and RMSD values. This study shows the unexplored potential of marine natural resources, however, obtaining sufficient biomass for detailed investigation is an uphill task. Regardless, there is a lot of potential for future prospects with a wide range of marine natural resources to study and the incorporation of synthetic chemistry, in vivo studies in experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Raw data of known compounds NMR can be provided upon request.

References

  • Abduljelil A, Uzairu A, Shallangwa G, Abechi S (2022) In-silico design, molecular docking and pharmacokinetics studies of some tacrine derivatives as anti-Alzheimer agents: theoretical investigation. Adv J Chem Sect A 5:59–69

    CAS  Google Scholar 

  • Alghazwi M, Kan YQ, Zhang W, Gai WP, Garson MJ, Smid S (2016) Neuroprotective activities of natural products from marine macroalgae during 1999–2015. J Appl Phycol 28:3599–3616

    Article  CAS  Google Scholar 

  • Aristyawan AD, Setyaningtyas VF, Wahyuni TS, Widyawaruyanti A, Ingkaninan K, Suciati S (2022) In vitro acetylcholinesterase inhibitory activities of fractions and iso-agelasine C isolated from the marine sponge Agelas nakamurai. J Res Pharm 26:279–286

    CAS  Google Scholar 

  • Avila C, Angulo-Preckler C (2020) Bioactive compounds from marine heterobranchs. Mar Drugs 18:657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa M, Valentão P, Andrade PB (2014) Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar Drugs 12:4934–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brass EP (2000) Supplemental carnitine and exercise. Am J Clin Nutr 72:618–623

    Article  Google Scholar 

  • Brown S, Yao A, Taub PJ (2018) Antifibrinolytic agents in plastic surgery: current practices and future directions. Plast Reconstr Surg 141:937–949

    Article  Google Scholar 

  • Cantrell CL, Schrader KK, Mamonov LK, Sitpaeva GT, Kustova TS, Dunbar C, Wedge DE (2005) Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J Agric Food Chem 53:7741–7748

    Article  CAS  PubMed  Google Scholar 

  • Cha S-H, Hwang Y, Heo S-J, Jun H-S (2019) Indole-4-carboxaldehyde isolated from seaweed, Sargassum thunbergii, attenuates methylglyoxal-induced hepatic inflammation. Mar Drugs 17:486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Y, Bai M, Zhang X, Shen S, Hou JY, Yao GD, Huang XX, Song SJ (2023) Neuroprotective and acetylcholinesterase inhibitory activities of alkaloids from Solanum lyratum Thunb.: an in vitro and in silico analyses. Phytochemistry 209:113623

    Article  CAS  PubMed  Google Scholar 

  • Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286

    Article  CAS  PubMed  Google Scholar 

  • Coleman M, Davis J, Maher KO, Deshpande SR (2021) Clinical and hematological outcomes of aminocaproic acid use during pediatric cardiac ecmo. J Extra Corpor Technol 53:40–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, Bellis L, Overington JP (2015) ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res 43:612–620

    Article  Google Scholar 

  • de Moura Fé TC, de Castro Ribeiro AD, Melo JC, da Rocha Tomé A, Vieira-Neto AE, Silva ARA, de Oliveira LG, Campos AR (2022) cis-Jasmone: phytopharmaceutical potential for the treatment of skin inflammation. Rev Bras Farmacogn 32:440–446

    Article  Google Scholar 

  • Delorenzi JC, Freire-de-Lima L, Gattass CR, Costa DdA, He L, Kuehne ME, Saraiva EMB (2002) In vitro activities of iboga alkaloid congeners coronaridine and 18-methoxycoronaridine against Leishmania amazonensis. Antimicrob Agents Chemother 46:2111–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127:515–520

    Article  CAS  PubMed  Google Scholar 

  • Ea S, Giacometti S, Ciccolini J, Akhmedjanova V, Aubert C (2008) Cytotoxic effects of haplamine and its major metabolites on human cancer cell lines. Planta Med 74:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JPS, Albuquerque HMT, Cardoso SM, Silva AMS, Silva VL (2021) Dual-target compounds for Alzheimer’s disease: natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur J Med Chem 221:1–26

    Article  Google Scholar 

  • Gaire BP, Kwon OW, Park SH, Chun K-H, Kim SY, Shin DY, Choi JW (2015) Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS One 10:0120203

    Article  Google Scholar 

  • Getachew P, Getachew M, Joo J, Choi YS, Hwang DS, Hong YK (2016) The slip agents oleamide and erucamide reduce biofouling by marine benthic organisms (diatoms, biofilms and abalones). Toxicol Environ Health Sci 8:342–348

    Article  Google Scholar 

  • Ghezzal S, Postal BG, Quevrain E, Brot PL, Seksik Leturque A, Thenet S, Carrière V (2020) Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158530

  • Ghoran HS, Kijjoa A (2021) Marine-derived compounds with anti-Alzheimer’s disease activities. Mar Drugs 19:410

    Article  Google Scholar 

  • Gomez-Cadenas A, Vives V, Zandalinas IS, Manzi M, Sanchez-Perez AM, Perez-Clemente MR, Arbona V (2015) Abscisic acid: a versatile phytohormone in plant signaling and beyond. Curr Protein Pept Sci 16:413–434

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves KG, Silva LL, Soares AR, Romeiro NC (2020) Acetylcholinesterase as a target of halogenated marine natural products from Laurencia dendroidea. AlgalRes 52:102130

    Google Scholar 

  • Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu SQ, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK (2005) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA 102:17213–17218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper DR, Gilbert RL, O’Connor TJ, Kinchington D, Mahmood N, Mcllhinney RAJ, Jeffries DJ (1996) Antiviral activity of 2-hydroxy fatty acids. Antiviral Chem Chemother 7:138–141

    Article  CAS  Google Scholar 

  • Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C (2016) Chebi in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44:1214–1219

    Article  Google Scholar 

  • Hattori H, Mori T, Shibata T, Kita M, Mitsunaga T (2012) 6-paradol acts as a potential anti-obesity vanilloid from grains of paradise. Mol Nutr Food Res 65:2100185

    Article  Google Scholar 

  • Hu D, Jin Y, Hou X, Zhu Y, Chen D, Tai J, Chen Q, Shi C, Ye J, Wu M, Zhang H (2023) Application of marine natural products against Alzheimer’s disease: past, present and future. Mar Drugs 21:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Hisada W, Abe T, Kikuchi N, Suzuki M (2020) A new record of the marine red alga Laurencia snackeyi from Japan and its chemotaxonomic significance. Rec Nat Prod 14:150–153

    Article  CAS  Google Scholar 

  • Jennings JA, Courtney HS, Haggard WO (2012) Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: a pilot study. Clin Orthop Relat Res 470:2663–2670

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji N-Y, Li X-M, Li K, Wang B-G (2007) Laurendecumallenes A-B and Laurendecumenynes A-B, Halogenated Nonterpenoid C15-Acetogenins from the Marine Red Alga Laurencia decumbens. J Nat Prod 70:1499–1502

    Article  CAS  PubMed  Google Scholar 

  • Kabir MT, Uddin MS, Jeandet P, Emran TB, Mitra S, Albadrani GM, Sayed AA, Abdel-Daim MM, Simal-Gandara J (2021) Anti-Alzheimer’s molecules derived from marine life: understanding molecular mechanisms and therapeutic potential. Mar Drugs 19:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada T, Vairappan CS (2012) A new bromoallene-producing chemical type of the red alga Laurencia nangii Masuda. Molecules 17:2119–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada T, Vairappan CS (2017) Non-halogenated new sesquiterpenes from Bornean Laurencia snackeyi. Nat Prod Res 31:333–340

    Article  CAS  PubMed  Google Scholar 

  • Khelfaoui H, Harkati D, Saleh BA (2021) Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J Biomol Struct Dyn 39:7246–7262

    Article  CAS  PubMed  Google Scholar 

  • Kim CR, Kim HS, Choi SJ, Kim JK, Gim MC, Kim Y-J, Shin D-H (2018) Erucamide from radish leaves has an inhibitory effect against acetylcholinesterase and prevents memory deficit induced by trimethyltin. J Med Food 21:769–776

    Article  CAS  PubMed  Google Scholar 

  • Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2001) New bromoterpenes from the red alga Laurencia luzonensis. J Nat Prod 64:696–700

    Article  CAS  PubMed  Google Scholar 

  • Kuniyoshi M, Wahome PG, Miono T, Hashimoto T, Yokoyama M, Shrestha KL, Higa T (2005) Terpenoids from Laurencia luzonensis. J Nat Prod 68:1314–1317

    Article  CAS  PubMed  Google Scholar 

  • Lee HS (2006) Antiplatelet property of Curcuma longa L. rhizome-derived ar-turmerone. Bioresour Technol 97:1372–1376

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Surh Y-J (1998) Induction of apoptosis in HL-60 cells by pungent vanilloids, [6]-gingerol and [6]-paradol. Cancer Lett 134:163–168

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Seo EY, Kang NE, Kim WK (2008) [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J Nutr Biochem 19:313–319

    Article  CAS  PubMed  Google Scholar 

  • Li M-M, Jiang Z-E, Song L-Y, Quan Z-S, Yu H-L (2017) Antidepressant and anxiolytic-like behavioral effects of erucamide, a bioactive fatty acid amide, involving the hypothalamus-pituitary-adrenal axis in mice. Neurosci Lett 640:6–12

    Article  CAS  PubMed  Google Scholar 

  • Liao J-C, Tsai J-C, Liu C-Y, Huang H-C, Wu L-Y, Peng W-H (2013) Antidepressant-like activity of turmerone in behavioral despair tests in mice. BMC Complement Altern Med 13:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu M, Hansen PE, Lin X (2011) Bromophenols in marine algae and their bioactivities. Mar Drugs 9:1273–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z-H, Mu Y-M, Wang B-A, Li X-L, Lu J-M, Li J-Y, Pan C-Y, Yanase T, Nawata H (2003) Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem Biophys Res Commun 303:1002–1007

    Article  CAS  PubMed  Google Scholar 

  • Maran VBA, Josmeh D, Tan JK, Yong YS, Shah MD (2021) Efficacy of the aqueous extract of Azadirachta indica against the marine parasitic leech and its phytochemical profiling. Molecules 26:1908

    Article  CAS  Google Scholar 

  • Marques CNH, Davies DG, Sauer K (2015) Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8:816–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda M, Takahashi Y, Okamoto K, Matsuo Y, Suzuki M (1997) Morphology and halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) stat. nov. (Ceramiales, Rhodophyta). Eur J Phycol 32:293–301

    Article  Google Scholar 

  • Meden A, Knez D, Jukic M, Brazzolotto X, Grsic M, Pislar A, Zahirovic A, Kos J, Nachon F, Svete J, Gobec US (2019) Groselj: tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer’s disease. Chem Commun 55:3765–3768

    Article  CAS  Google Scholar 

  • Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Marañón M (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47:930–940

    Article  Google Scholar 

  • Moraes MCB, Birkett MA, Gordon-Weeks R, Smart LE, Martin JL, Pye BJ, Bromilow R, Pickett JA (2008) cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 69:9–17

    Article  CAS  PubMed  Google Scholar 

  • Murphy RC (2015) Tandem mass spectrometry of lipids: Molecular analysis of complex lipids. R Soc Chem

  • Nachon F, Carletti E, Ronco C, Trovaslet M, Nicolet Y, Jean L, Renard PY (2013) Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. J Biochem J 453:393–399

    Article  CAS  PubMed  Google Scholar 

  • Niemoller TD, Bazan NG (2010) Docosahexaenoic acid neurolipidomics. Prostaglandins Other Lipid Mediat 91:85–89

    Article  CAS  PubMed  Google Scholar 

  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51:271–275

    Article  CAS  PubMed  Google Scholar 

  • Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M (2015) Coronaridine, an iboga type alkaloid from Tabernaemontana divaricata, inhibits the Wnt signaling pathway by decreasing β-catenin mRNA expression. Bioorg Med Chem Lett 25:3937–3940

    Article  CAS  PubMed  Google Scholar 

  • Palaniveloo K, Vairappan CS (2014) Chemical relationship between red algae genus Laurencia and sea hare (Aplysia dactylomela Rang) in the North Borneo Island. J Appl Phycol 26:1199–1205

    Article  CAS  Google Scholar 

  • Palaniveloo K, Rizman-Idid M, Nagappan T, Abdul Razak S (2020) Halogenated metabolites from the diet of Aplysia dactylomela Rang. Molecules 25:815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M (2018) Palmitic and oleic acid: the Yin and Yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab 29:178–190

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Jin ML, Kim YH, Kim Y, Lee SJ (2012) Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol 14:13–20

    Article  CAS  PubMed  Google Scholar 

  • Pechère M, Germanier L, Siegenthaler G, Pechère JC, Saurat JH (2002) The antibacterial activity of topical retinoids: the case of retinaldehyde. Dermatology 205:153–158

    Article  PubMed  Google Scholar 

  • Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20:4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem N Jr, Litman B, Kim H-Y, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 39:945–959

    Article  Google Scholar 

  • Srivastava P, Tripathi PN, Sharma P, Rai SN, Singh SP, Srivastava RK, Shankar S, Shrivastava SK (2019) Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 163:116–135

    Article  CAS  PubMed  Google Scholar 

  • Stuhlmeier KM, Tarn C, Bach FH (1997) The effect of 5,8,11,14-eicosatetraynoic acid on endothelial cell gene expression. Eur J Pharmacol 325:209–219

    Article  CAS  PubMed  Google Scholar 

  • Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH, Murphy RC Jr, Raetz CRH, Russell DW, Subramaniam S (2006) Lmsd: lipid maps structure database. Nucleic Acids Res 35:527–532

    Article  Google Scholar 

  • Suzuki M, Vairappan CS (2005) Halogenated secondary metabolites from Japanese species of the red algal genus Laurencia (Rhodomelaceae, Ceramiales). Curr Top Phytochem 7:1–34

    CAS  Google Scholar 

  • Tan KL, Matsunaga S, Vairappan CS (2011) Halogenated chamigranes of red alga Laurencia snackeyi (Weber-van Bosse) Masuda from Sulu-Sulawesi Sea. Biochem Syst Ecol 39:213–215

    Article  CAS  Google Scholar 

  • Tripathi PN, Srivastava P, Sharma P, Tripathi MK, Seth A, Tripathi A, Rai SN, Singh SP, Shrivastava SK (2019) Biphenyl-3-oxo-1, 2, 4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 85:82–96

    Article  CAS  PubMed  Google Scholar 

  • Vairappan CS, Tan KL (2005) Halogenated secondary metabolites from sea hare Aplysia dactylomela. Malays J Sci 24:17–22

    CAS  Google Scholar 

  • Vairappan CS, Kawamoto T, Miwa H, Suzuki M (2004) Potent antibacterial activity of halogenated compounds against antibiotic-resistant bacteria. Planta Med 70:1087–1090

    Article  CAS  PubMed  Google Scholar 

  • Vairappan CS, Anangdan SP, Tan KL (2007) Additional halogenated secondary metabolites from the sea hare Aplysia dactylomela. Malays J Sci 26:57–64

    CAS  Google Scholar 

  • Vairappan CS, Anangdan SP, Matsunaga S (2009) Diet-derived halogenated metabolite from the sea hare Aplysia parvula. Malays J Sci 28:269–273

    Article  CAS  Google Scholar 

  • Vairappan CS, Kamada T, Lee WW, Jeon YJ (2013) Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. J Appl Phycol 25:1805–1813

    Article  CAS  Google Scholar 

  • Viayna E, Coquelle N, Cieslikiewicz-Bouet M, Cisternas P, Oliva CA, Sanchez-Lopez E, Ettcheto M, Bartolini M, De Simone A, Ricchini M, Rendina M (2020) Discovery of a potent dual inhibitor of acetylcholinesterase and butyrylcholinesterase with antioxidant activity that alleviates Alzheimer-like pathology in old APP/PS1 mice. J Med Chem 64:812–839

    Article  PubMed  Google Scholar 

  • Wanke T, Philippus AC, Zatelli GA, Vieira LFO, Lhullier C, Falkenberg M (2015) C15 acetogenins from the Laurencia complex: 50 years of research-an overview. Rev Bras 25:569–587

    CAS  Google Scholar 

  • Wei C-K, Tsai Y-H, Korinek M, Hung P-H, El-Shazly M, Cheng Y-B, Wu Y-C, Hsieh T-J, Chang F-R (2017) 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int J Mol Sci 18:16

    Article  Google Scholar 

  • Wijesinghe WAJP, Kang MC, Lee WW, Lee HS, Kamada T, Vairappan CS, Jeon YJ (2014) 5β-hydroxypalisadin b isolated from red alga Laurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated raw 264.7 macrophages. Algae 29:333–341

    Article  CAS  Google Scholar 

  • Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, Li Z, He T, Xiao Y, Zhao J (2021) Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Front Microbiol 12:645484

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Huang M, Zou X (2018) Docking-based inverse virtual screening: methods, applications, and challenges. Biophys Rep 4:1–16

    Article  PubMed  Google Scholar 

  • Young H-Y, Luo Y-L, Cheng H-Y, Hsieh W-C, Liao J-C, Peng W-H (2005) Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol 96:207–210

    Article  CAS  PubMed  Google Scholar 

  • Yue GG-L, Kwok H-F, Lee JK-M, Jiang L, Chan K-M, Cheng L, Wong EC-W, Leung P-C, Fung K-P, Lau CB-S (2015) Novel anti-angiogenic effects of aromatic-turmerone, essential oil isolated from spice turmeric. J Funct Foods 15:243–253

    Article  CAS  Google Scholar 

  • Zhan G, Gao B, Zhou J, Liu T, Zheng G, Jin Z, Yao G (2023) Structurally diverse alkaloids with nine frameworks from Zephyranthes candida and their acetylcholinesterase inhibitory and anti-inflammatory activities. Phytochemistry 207:113564

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Jiao W, Xu Y, Hou L, Li H, Shao J, Zhang X, Wang R, Kong D (2021) Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci 286:120046

    Article  CAS  PubMed  Google Scholar 

  • Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 13:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Acknowledgements are due to the Marine Park Unit of Department of Fisheries, through Mr Albert Apollo Chan for organising and to the Expedition head, Dr Mohammed Rizman-Idid. We also convey our gratitude to Dr Yeong Hui Yin for the deposition of herbarium. This research is funded by the Science and Technology Research Partnership for Sustainable Development (SATREPS) Program entitled ‘Development of Advanced Hybrid Ocean Thermal Energy Conversion (OTEC) Technology for Low Carbon Society and Sustainable Energy System: First Experimental OTEC Plant of Malaysia’ funded by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA), and Ministry of Higher Education Malaysia (MoHE) and led by the Institute of Ocean Energy Saga University (IOES) of Japan, and UTM Ocean Thermal Energy Centre (UTM OTEC), Universiti Teknologi Malaysia (UTM). Registered Program Cost Centre: R.K130000.7809.4L887, Project [Cost Centre: Project No IF045-2019]. This manuscript is also an output for the SATU Joint Research Scheme Grant  between National Cheng Kung University (Project No. NCKU25) - Universiti Malaya (Project No. ST055-2021) and Universitas Airlangga (Project No. 1259/UN3.15/PT/2022) - Universiti Malaya (Project No. ST093-2022).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KP; methodology, KP, YYS, SS and HS; software, HS and JKT; validation, KP, SS, YYS, JKT and HS; formal analysis, KP, SS, YYS, JKT and HS; investigation, KP, SS, YYS, JKT and HS; resources, KP, SS OKH and HS; data curation, KP and SS; writing—original draft preparation, KP and OKH; writing—review and editing, KP, SS, OKH, SAR, PSM, MRI, SH, HSY; supervision, KP, SAR; project administration, KP; funding acquisition, SAR. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kishneth Palaniveloo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Ethics approval

No human participants and/or animals were used in this publication.

Financial interest

The authors declare they have no financial interest.

Consent to participate

No human participants were used in this publication.

Consent for publication

All authors have agreed for publication.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 92 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaniveloo, K., Ong, K.H., Satriawan, H. et al. In vitro and in silico cholinesterase inhibitory potential of metabolites from Laurencia snackeyi (Weber-van Bosse) M. Masuda. 3 Biotech 13, 337 (2023). https://doi.org/10.1007/s13205-023-03725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03725-6

Keywords

Navigation