Skip to main content

Advertisement

Log in

Comparison of conventional and temporary immersion systems on micropropagation (multiplication phase) of Agave angustifolia Haw. Bacanora

  • Short Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The aim of this study was to improve the quality of the micropropagated A. angustifolia Haw. plants cultured in temporary immersion bioreactors (TIS) comparing them with those produced through conventional semisolid-solid tissue culture system (SS). The Recipient for Automated Temporary Immersion (RITA®) bioreactor was used as TIS in this work. The effect of different culture conditions, such as explants density, genotype, and duration of the incubation stages, were analyzed. The growth and morphological parameters measured for the in vitro cultured plants were: plant height, number of new leaves, number of shoots/explants, growth index (GI), dry mass content, and water content. In all experiments, it was observed that plantlets cultivated in the TIS grew larger than those cultivated in SS. Analyzing all the parameters used in this study, the results showed that RITA bioreactor generates a better shoot production and a better GI when using 20 plantlets per container. The number of shoots increased with time of culture (60 days) in both systems. However, the shoots and plantlets cultivated in TIS grew bigger and showed better quality (did not present necrosis in the leaves) than the ones cultured in SS. This study provides experimental evidence that the application of TIS for micropropagation of A. angustifolia is a viable option for the production of high-quality shoots for reforestation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Acanda Y, Canton M, Wu H, Zale J (2017) Kanamycin selection in temporary immersion bioreactors allows visual selection of transgenic citrus shoots. Plant Cell Tissue Organ Cult 129:351–357. https://doi.org/10.1007/s11240-017-1182-y

    Article  CAS  Google Scholar 

  • Aguilar ME, Garita K, Kim YW et al (2019) Simple protocol for the micropropagation of teak (Tectona grandis Linn.) in semi-solid and liquid media in RITA bioreactors and ex vitro rooting. Am J Plant Sci 10:1121–1141. https://doi.org/10.4236/ajps.2019.107081

    Article  CAS  Google Scholar 

  • Airò M, Mammano MM, Giardina G, Giovino A (2017) Temporary immersion system: an efficient technique to improve the Plumeria rubra L. scale-up. Acta Hortic. https://doi.org/10.17660/ActaHortic.2017.1155.32

    Article  Google Scholar 

  • Akdemir H, Süzerer V, Onay A et al (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Organ Cult 117:65–76. https://doi.org/10.1007/s11240-013-0421-0

    Article  CAS  Google Scholar 

  • Álvarez-Ainza M, Arellano-Plaza M, De la Torre-González F et al (2017) Bebidas Destiladas de Agave. In: Gschaedler Mathis, Anne Christine (Coord.) Panorama del Aprovechamiento de los Agaves en México, Primera Ed. AGARED, Red Temática Mexicana Aprovechamiento Integral Sustentable y Biotecnología de los Agaves, pp 165–214

  • Aragón CE, Sánchez C, Gonzalez-Olmedo J et al (2014) Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol Plant 58:29–38. https://doi.org/10.1007/s10535-013-0381-6

    Article  CAS  Google Scholar 

  • Benelli C, De Carlo A (2018) In vitro multiplication and growth improvement of Olea europaea L. cv Canino with temporary immersion system (PlantformTM). 3 Biotech. https://doi.org/10.1007/s13205-018-1346-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for liquid medium in mass propagation. Liq Cult Syst In Vitro Plant Propag. https://doi.org/10.1007/1-4020-3200-5_11

    Article  Google Scholar 

  • Carrillo-Bermejo EA, Herrera-Alamillo MA, González-Mendoza VM et al (2019) Comparison of two different micropropagation systems of Saccharum officinarum L. and expression analysis of PIP2;1 and EIN3 genes as efficiency system indicators. Plant Cell Tissue Organ Cult 136:399–405. https://doi.org/10.1007/s11240-018-1508-4

    Article  CAS  Google Scholar 

  • Chavez-Parga MDC, Pérez Hernández E, González Hernández JC (2016) Revisión del agave y el mezcal. Rev Colomb Biotecnol. https://doi.org/10.15446/rev.colomb.biote.v18n1.49552

    Article  Google Scholar 

  • De Klerk GJ, Ter Brugge J (2011) Micropropagation of dahlia in static liquid medium using slow-release tools of medium ingredients. Sci Hortic (Amsterdam) 127:542–547. https://doi.org/10.1016/j.scienta.2010.11.015

    Article  CAS  Google Scholar 

  • Ekmekçigil M, Bayraktar M, Akkuş Ö, Gürel A (2019) High-frequency protocorm-like bodies and shoot regeneration through a combination of thin cell layer and—RITA ® temporary immersion bioreactor in Cattleya forbesii Lindl. Plant Cell Tissue Organ Cult 136:451–464. https://doi.org/10.1007/s11240-018-1526-2

    Article  Google Scholar 

  • Escalona M, Lorenzo JC, González B et al (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748. https://doi.org/10.1007/s002990050653

    Article  CAS  Google Scholar 

  • Escalona M, Samson G, Borroto C, Desjardins Y (2003) Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cell Dev Biol Plant 39:651–656

    Article  CAS  Google Scholar 

  • Esqueda Valle M, Coronado Andrade M, Gutiérrez Saldaña AH, Fragoso Gadea T (2016) Agave angustifolia Haw. Técnicas para el trasplante de vitroplantas a condiciones de agostadero. Secretaría de Agricultura Ganaderiá, Pesca y Alimentación (SAGARPA). México, DF, p 18

  • Esqueda Valle M, Coronado Andrade ML, Gutiérrez Saldaña A, Robert ML, Fragoso Gadea T (2020) Manejo sostenible de Agave angustifolia en condiciones silvestres. In: Ecología y Biotecnología Aplicadas al Manejo Sostenible de los agaves en Sonora, In Press. Centro de Investigación en Alimentación y Desarrollo A.C

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231

    Article  Google Scholar 

  • García Mendoza AJ, Cházaro Basañez M, Nieto Sotelo J et al (2017) Agave. In: Gschaedler Mathis, Anne Christine (Coord.) Panorama del Aprovechamiento de los Agaves en México, Primera Ed. AGARED, Red Temática Mexicana Aprovechamiento Integral Sustentable y Biotecnología de los Agaves, México, pp 1–68

  • García-Ramírez Y, Gonzales Gonzáles M, Quiala Mendoza E et al (2014) Effect of BA treatments on morphology and physiology of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Am J Plant Sci 5:205–211

    Article  Google Scholar 

  • García-Ramírez Y, González-González M, Torres García S et al (2016) Efecto de la densidad de inóculo sobre la morfología y fisiología de los brotes de Bambusa vulgaris Schrad. ex Wendl cultivados en Sistema de Inmersión Temporal. Biotechnol Veg 16:231–237

    Google Scholar 

  • George EF, Hall MA, DeKlerk GJ (eds) (2008) Plant propagation by tissue culture. Springer, Dordrecht

    Google Scholar 

  • Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. https://doi.org/10.1023/A:1015668610465

    Article  CAS  Google Scholar 

  • Godoy S, Tapia E, Seit P et al (2017) Temporary immersion systems for the mass propagation of sweet cherry cultivars and cherry rootstocks: development of a micropropagation procedure and effect of culture conditions on plant quality. In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-017-9856-z

    Article  Google Scholar 

  • Godoy-Hernández G, Vazquez-Flota F (2006) Growth measurements. In: Loyola-Vargas VM, Vázquez-Flota F (eds) Plant cell culture protocols, 2nd edn. Humana Press, Towota, pp 51–58

    Google Scholar 

  • Gómez D, Hernández L, Valle B et al (2017) Temporary immersion bioreactors (TIB) provide a versatile, cost-effective and reproducible in vitro analysis of the response of pineapple shoots to salinity and drought. Acta Physiol Plant 39:1–8. https://doi.org/10.1007/s11738-017-2576-5

    Article  CAS  Google Scholar 

  • Guan H, De Klerk GJ (2000) Stem segments of apple microcuttings take up auxin predominantly via the cut surface and not via the epidermal surface. Sci Hortic (Amsterdam) 86:23–32. https://doi.org/10.1016/S0304-4238(00)00132-1

    Article  CAS  Google Scholar 

  • Gutiérrez-Coronado M, Acedo-Félix E, Valenzuela-Quintanar A (2009) Industria del Bacanora y su Proceso de Elaboración Bacanora Industry and its Process of Production. CYTA J Food 5:394–404. https://doi.org/10.1080/11358120709487718

    Article  Google Scholar 

  • Jackson MB (2005) Aeration stress in plant tissue cultures. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 459–473

    Chapter  Google Scholar 

  • Jackson MB, Abbott AJ, Belcher AR et al (1991) Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann Bot 67:229–237. https://doi.org/10.1093/oxfordjournals.aob.a088127

    Article  CAS  Google Scholar 

  • Jesionek A, Kokotkiewicz A, Wlodarska P et al (2017) Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre ) for a large-scale production of bioactive volatile compounds. Plant Cell Tissue Organ Cult 131:51–64. https://doi.org/10.1007/s11240-017-1261-0

    Article  CAS  Google Scholar 

  • Lyam PT, Musa ML, Jamaleddine ZO et al (2012) The potential of temporary immersion bioreactors (TIBs) in meeting crop production demand in Nigeria. J Biol Life Sci 3:66–86. https://doi.org/10.5296/jbls.v3i1.1156

    Article  Google Scholar 

  • Malik M, Warchoł M, Kwaśniewska E, Pawłowska B (2017) Biochemical and morphometric analysis of Rosa tomentosa and Rosa rubiginosa during application of liquid culture systems for in vitro shoot production. J Hortic Sci Biotechnol 92:606–613. https://doi.org/10.1080/14620316.2017.1324744

    Article  CAS  Google Scholar 

  • Monja-Mio KM, Pool FB, Herrera GH et al (2015) Development of the stomatal complex and leaf surface of Agave angustifolia Haw. “Bacanora” plantlets during the in vitro to ex vitro transition process. Sci Hortic (Amsterdam) 189:32–40. https://doi.org/10.1016/j.scienta.2015.03.032

    Article  CAS  Google Scholar 

  • Monja-Mio K, Herrera-Alamillo M, Robert M (2016) Somatic embryogenesis in temporary immersion bioreactors. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing, Switzerland, pp 1–506

    Google Scholar 

  • Monja-Mio KM, Quiroz-Moreno A, Herrera-Herrera G et al (2018) Analysis of two clonal lines (embryogenic and non-embryogenic) of Agave fourcroydes using AFLP and MSAP. Am J Plant Sci 09:745–762. https://doi.org/10.4236/ajps.2018.94059

    Article  CAS  Google Scholar 

  • Monja-Mio KM, Herrera-Alamillo MÁ, Sánchez-Teyer LF, Robert ML (2019) Breeding strategies to improve production of Agave (Agave spp.). In: Al- Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: industrial and food crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_10

    Chapter  Google Scholar 

  • Monja-Mio KM, Olvera-Casanova D, Herrera-Herrera G et al (2020) Improving of rooting and ex vitro acclimatization phase of Agave tequilana by temporary immersion system (BioMINTTM). In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-020-10109-5

    Article  Google Scholar 

  • Mosqueda Frometa O, Escalona Morgado MM, Daquinta Gradaille MA (2016) Efecto del tiempo de cultivo y volumen de medio de cultivo por explante en la multiplicación de Gerbera jamesonii en Sistemas de Inmersión Temporal. Biotechnol Veg 16:3–11

    Google Scholar 

  • Mosqueda Frómeta O, Escalona Morgado MM, Teixeira da Silva JA et al (2017) In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. in a temporary immersion bioreactor. Plant Cell Tissue Organ Cult 129:543–551. https://doi.org/10.1007/s11240-017-1186-7

    Article  CAS  Google Scholar 

  • Nasri A, Baklouti E, Ben Romdhane A et al (2019) Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci Hortic (Amsterdam) 245:144–153. https://doi.org/10.1016/j.scienta.2018.10.016

    Article  CAS  Google Scholar 

  • Polzin F, Sylvestre I, Déchamp E et al (2014) Effect of activated charcoal on multiplication of African yam (Dioscorea cayenensis-rotundata) nodal segments using a temporary immersion bioreactor (RITA®). In Vitro Cell Dev Biol Plant 50:210–216. https://doi.org/10.1007/s11627-013-9552-6

    Article  CAS  Google Scholar 

  • Preil W (2005) General introduction: a personal reflection on the use of liquid media for in vitro culture. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 1–18

    Google Scholar 

  • Quiala E, Barbón R, Jimenez E et al (2006) Biomass production of Cymbopogon citratus (D.C.) stapf., a medicinal plant, in temporary immersion systems. In Vitro Cell Dev Biol Plant 42:298–300. https://doi.org/10.1079/IVP2006765

    Article  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol Plant 52:154–160. https://doi.org/10.1007/s11627-015-9735-4

    Article  Google Scholar 

  • Ramírez-Mosqueda MA, Cruz-Cruz CA, Cano-Ricárdez A, Bello-Bello JJ (2019) Assessment of different temporary immersion systems in the micropropagation of anthurium (Anthurium andreanum). 3 Biotech 9:1–7. https://doi.org/10.1007/s13205-019-1833-2

    Article  Google Scholar 

  • Regueira M, Rial E, Blanco B et al (2018) Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees Struct Funct 32:61–71. https://doi.org/10.1007/s00468-017-1611-x

    Article  CAS  Google Scholar 

  • Robert M, Herrera-Herrera J, Herrera-Alamillo M et al (2004) Manual for the in vitro culture of Agaves. United Nations Industrial Development Organization, Vienna

    Google Scholar 

  • Robert ML, Herrera-Herrera JL, Castillo E et al (2006) An efficient method for the micropropagation of Agave species. Methods Mol Biol 318:165–178. https://doi.org/10.1385/1-59259-959-1:165

    Article  PubMed  Google Scholar 

  • Schönherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57:2471–2491. https://doi.org/10.1093/jxb/erj217

    Article  CAS  PubMed  Google Scholar 

  • Vidal N, Sánchez C (2019) Use of bioreactor systems in the propagation of forest trees. Eng Life Sci 19:896–915. https://doi.org/10.1002/elsc.201900041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vives K, Andújar I, Lorenzo JC et al (2017) Comparison of different in vitro micropropagation methods of Stevia rebaudiana B. including temporary immersion bioreactor (BIT®). Plant Cell Tissue Organ Cult 131:195–199. https://doi.org/10.1007/s11240-017-1258-8

    Article  CAS  Google Scholar 

  • Watt MP (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol 11:14025–14035

    CAS  Google Scholar 

  • Welander M, Persson J, Asp H, Zhu LH (2014) Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci Hortic (Amsterdam) 179:227–232. https://doi.org/10.1016/j.scienta.2014.09.035

    Article  CAS  Google Scholar 

  • Zhang B, Song L, Dadi L et al (2018) Optimizing factors a ffecting development and propagation of Bletilla striata in a temporary immersion bioreactor system. Sci Hortic (Amsterdam) 232:121–126. https://doi.org/10.1016/j.scienta.2018.01.007

    Article  CAS  Google Scholar 

  • Ziv M (2005) Simple bioreactors for mass propagation of plants. Plant Cell Tissue Organ Cult 81:277–285. https://doi.org/10.1007/1-4020-3200-5

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gaston Herrera-Herrera and Francisco Espadas-Gil for their skillful technical assistance and the economic support received by KMMM from “Consejo Nacional de Ciencia y tecnología” (CONACYT) FORDECYT No 296369.

Author information

Authors and Affiliations

Authors

Contributions

KMMM and MLR conceived and designed research. KMMM and DOC conducted experiments. MAHA and FLST analyzed and reviewed the discussion of the theme. KMMM and MLR wrote the manuscript. KMMM, DOC, MAHA, FLST, and MLR read and approved the manuscript.

Corresponding authors

Correspondence to Kelly M. Monja-Mio or Manuel L. Robert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monja-Mio, K.M., Olvera-Casanova, D., Herrera-Alamillo, M.Á. et al. Comparison of conventional and temporary immersion systems on micropropagation (multiplication phase) of Agave angustifolia Haw. Bacanora’. 3 Biotech 11, 77 (2021). https://doi.org/10.1007/s13205-020-02604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02604-8

Keywords

Navigation