Skip to main content
Log in

Potential biocontrol efficacy of Trichoderma atroviride with cellulase expression regulator ace1 gene knock-out

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The biocontrol function of the repressor of cellulase expression I (ACE1) in Trichoderma atroviride was verified through constructing Δace1 mutant strain by Agrobacterium tumefaciens-mediated transformation. The activities of cell wall-degrading enzymes (cellulase, xylanase, chitinase, β-1,3-glucanase, and protease) in the supernatant of Δace1 mutant strain were distinctly higher than those of control strain, followed with the elevation of related genes transcript levels. Besides, the Δace1 mutant resulted in an elevating transcript level of xyr1, but no obvious change in the expression of cre1, which suggested that ACE1 was negative regulator of the xyr1 transcription, but not involved in cre1 transcription. On core polyketide synthases of four biosynthesis gene clusters for antibiotic secondary metabolites, only the transcription levels of encoding genes Try83179/TryH and Aza79482/AzaJ in Δace1 mutant strain were significantly higher than that in wild-type during antagonizing with pathogenic fungi Fusarium oxysporum and Rhizoctonia solani (with the inhibition rate of 30.7 and 19.8%, respectively). The biocontrol function of Δace1 mutant strain was remarkably enhanced. The results indicated that ACE1, indeed, acted as a repressor for cell wall-degrading enzymes and PKSs expression in T. atroviride, and the Δace1 mutant strain effectively made related enzymes activities improved with potential enhancement of biocontrol potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aro N, Ilmén M, Saloheimo A, Penttilä M (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Baker SE, Perrone G, Richardson NM, Gallo A, Kubicek CP (2012) Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology 158:147–154

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Liermann JC, Opatz T, Anke H, Thines E (2012) GKK1032A2, a secondary metabolite from Penicillium sp. IBWF-029-96, inhibits conidial germination in the rice blast fungus Magnaporthe oryzae. J Antibiot (Tokyo) 65:99–102

    Article  CAS  Google Scholar 

  • Bigelis R, He H, Yang HY, Chang LP, Greenstein M (2006) Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J Ind Microbiol Biotechnol 33:815–826

    Article  CAS  PubMed  Google Scholar 

  • Bushley KE, Turgeon BG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zeng X, Yang YL, Xing YM, Zhang Q, Li JM, Ma K, Liu HW, Guo SX (2017) Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus. Sci Rep 7:10151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang YM, Oakley BR, Keller NP, Wang CC (2010) Unraveling polyketide synthesis in members of the genus Aspergillus. Appl Microbiol Biotechnol 86:1719–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL (2012) Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA 109:7397–7402

    Article  PubMed  Google Scholar 

  • De Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Gao X, Chooi YH, Ames BD, Wang P, Walsh CT, Tang Y (2011) Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J Am Chem Soc 133:2729–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Yang HY, Bigelis R, Solum EH, Greenstein M, Carter G (2002) Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Lett 43:1633–1636

    Article  CAS  Google Scholar 

  • Isaka M, Rugseree N, Maithip P, Kongsaeree P, Prabpai S, Thebtaranonth Y (2005) Hirsutellones A–E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron 61:5577–5583

    Article  CAS  Google Scholar 

  • Isaka M, Prathumpai W, Wongsa P, Tanticharoen M (2006) Hirsutellone F, a dimer of antitubercular alkaloids from the seed fungus Trichoderma species BCC 7579. Org Lett 8:2815–2817

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yang Z, Zhang RH, Zhang D, Chen S, Ma L (2013a) Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol 168:470–477

    Article  CAS  PubMed  Google Scholar 

  • Li XW, Ear A, Nay B (2013b) Hirsutellones and beyond: figuring out the biological and synthetic logics toward chemical complexity in fungal PKS–NRPS compounds. Natl Prod Rep 30:765–782

    Article  CAS  Google Scholar 

  • Li Q, Ng WT, Wu JC (2014) Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb Cell Fact 13:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun R, Yu J, Saravanakumar K, Chen J (2016) Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the Maize Stalk Rot Pathogen Fusarium graminearum. Indian J Microbiol 56:318–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL (2008) Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 74:6554–6562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155–165

    Article  CAS  PubMed  Google Scholar 

  • Noronha EF, Ulhoa CJ (2000) Characterization of a 29-kDa beta-1,3-glucanase from Trichoderma harzianum. FEMS Microbiol Lett 183:119–123

    CAS  PubMed  Google Scholar 

  • Oda S, Kameda A, Okanan M, Sakakibara Y, Ohashi S (2015) Discovery of secondary metabolites in an extractive liquid-surface immobilization system and its application to high-throughput interfacial screening of antibiotic-producing fungi. J Antibiot (Tokyo) 68:691–697

    Article  CAS  Google Scholar 

  • Oikawa H (2003) Biosynthesis of structurally unique fungal metabolite GKK1032A(2): indication of novel carbocyclic formation mechanism in polyketide biosynthesis. J Org Chem 68:3552–3557

    Article  CAS  PubMed  Google Scholar 

  • Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–342

    Article  CAS  Google Scholar 

  • Saloheimo A, Aro N, Ilmén M, Penttilä M (2000) Isolation of the ace1 gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem 275:5817–5825

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Raghuwanshi R, Singh HB (2015) Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. J Basic Microbiol 55:195–206

    Article  CAS  PubMed  Google Scholar 

  • Schmoll M, Kubicek CP (2003) Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol Immunol Hung 50:125–145

    Article  CAS  PubMed  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stöffler G, Wolschek M, Kubicek CP (1995) Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Cao Y, Wang L, Lv X, Meng X, Zhang W, Chen G, Liu W (2017) The mating type locus protein MAT1-2-1 of Trichoderma reesei interacts with Xyr1 and regulates cellulase gene expression in response to light. Sci Rep 7:17346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We really appreciate all the useful comment and support from our colleagues in Jiangxi University of Technology, China.

Funding

This work was supported by Jiangxi Provincial Science and Technology Project of Ministry of Education (Project No.: GJJ161137) and Natural Science Project of Jiangxi Science and Technology College (Project No.: 16ZRYB03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjuan Fang.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Ethical statement

All procedures of this study were complied with local experimental operation specification. In addition, no relevant ethical statement was needed to be declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Chen, X. Potential biocontrol efficacy of Trichoderma atroviride with cellulase expression regulator ace1 gene knock-out. 3 Biotech 8, 302 (2018). https://doi.org/10.1007/s13205-018-1314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1314-z

Keywords

Navigation