Skip to main content
Log in

Bacterial cellulase treatment for enhancing reactivity of pre-hydrolysed kraft dissolving pulp for viscose

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

To improve the process economy of reactivity improvement, crude cellulase from Bacillus subtilis was employed for the treatment and significant dissolving pulp properties were analyzed. With increase in enzyme dose from 0.25 to 2 U/g o.d. pulp, improvement in Fock reactivity and alkali solubilities (S10 and S18) were observed with simultaneous reduction in viscosity and yield. Fourier transform infrared spectroscopy and scanning electron microscopy were used to observe the molecular level effects on dissolving grade pulp. The most suitable cellulase dose for reactivity improvement with lowering of viscosity was 0.25 U/g o.d. pulp. With increases in enzyme dose, alkali solubilities (S10 and S18) of dissolving pulp showed continuous increment, while alpha-cellulose of pulp showed reduction due to chain scission of long cellulose fiber fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annergren G, Backlund A, Richter J, Rydholm S (1965) Continuous prehydrolysis-kraft cooking. Tappi J 48:52–56

    Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257

    Article  CAS  Google Scholar 

  • Bajpai P (2012) Production of dissolving grade pulp: biotechnology for pulp and paper processing. Springer, New York

    Book  Google Scholar 

  • Bhardwaj NK, Dang VQ, Nguyen KL (2006) Determination of carboxyl content in high yield kraft pulps using photoacoustic rapid-scan Fourier transform infrared spectroscopy. Anal Chem 78:6818–6825. https://doi.org/10.1021/ac0605952

    Article  CAS  PubMed  Google Scholar 

  • Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang S, Resch MG, Adams MWW, Lunin VV, Himmel ME, Bomble YJ (2013) Revealing Nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165):1513–1516. https://doi.org/10.1126/science.1244273

    Article  CAS  PubMed  Google Scholar 

  • Christoffersson KE, Sjostrom M, Edlund U, Lindgren A, Dolk M (2002) Reactivity of dissolving pulp: characterisation using chemical properties, NMR spectroscopy and multivariate data analysis. Cellulose 9(2):159–170. https://doi.org/10.1023/A:1020108125490

    Article  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose: structure and characterization. Cellulose Chem Technol 45(1–2):13–21

    CAS  Google Scholar 

  • Duan C, Verma SK, Li J, Ma X, Ni Y (2016) Combination of mechanical, alkaline and enzymatic treatments to upgrade paper-grade pulp to dissolving pulp with high reactivity. Biores Technol 200:458–463. https://doi.org/10.1016/j.biortech.2015.10.067

    Article  CAS  Google Scholar 

  • Engström AC, Ek M, Henriksson G (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromol 7(6):2027–2031. https://doi.org/10.1021/bm0509725

    Article  CAS  Google Scholar 

  • Filpponen I, Argyropoulos DS (2008) Determination of cellulose reactivity by using phosphitylation and quantitative 31P NMR spectroscopy. Ind Eng Chem Res 47:8906–8910

    Article  CAS  Google Scholar 

  • Fock W (1959) A modified method for determining the reactivity of viscose-grade dissolving pulps. Das Papier 13:92–95

    CAS  Google Scholar 

  • Gehmayr V, Sixta H (2012) Pulp properties and their influence on enzymatic degradability. Biomacromol 13:645–651. https://doi.org/10.1021/bm201784u

    Article  CAS  Google Scholar 

  • Gehmayr V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp viscose application. Cellulose 18:479–491. https://doi.org/10.1007/s10570-010-9483-x

    Article  CAS  Google Scholar 

  • Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. J Ind Microbiol Biotechnol 32(5):211–214

    Article  CAS  PubMed  Google Scholar 

  • Ibarra D, Köpcke V, Ek M (2010) Behaviour of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microb Technol 47(7):355–362. https://doi.org/10.1016/j.enzmictec.2010.07.016

    Article  CAS  Google Scholar 

  • Jackson LS, Heitmann JA, Joyce TW (1998) Production of dissolving pulp from recovered paper using enzymes. Tappi J 81:171–178

    CAS  Google Scholar 

  • Kaur P, Bhardwaj NK, Sharma J (2016a) Application of microbial enzymes in dissolving pulp production. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology. Springer, New York, pp 133–156

    Chapter  Google Scholar 

  • Kaur P, Bhardwaj NK, Sharma J (2016b) Pretreatment with xylanase and its significance in hemicellulose removal from mixed hardwood kraft pulp as a process step for viscose. Carbohydr Polym 145:95–102. https://doi.org/10.1016/j.carbpol.2016.03.023

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Bhardwaj NK, Sharma J (2017) Pentosan reduction from mixed hardwood kraft pulp with alkali treatment and its statistical optimization. Lignocellulose 6(1):23–35

    Google Scholar 

  • Köpcke V (2010) Conversion of wood and non-wood paper-grade pulps to dissolving-grade pulps. Ph.D. Dissertation, Royal Institute of Technology in Stockholm (KTH), Sweden

  • Kvarnlöf N (2007) Activation of dissolving pulps prior to viscose preparation, Ph.D. Dissertation, Karlstad University

  • Kvarnlöf N, Germgård U, Jönsson L, Söderlund CA (2007) Optimization of the enzymatic activation of a dissolving pulp before viscose manufacture. Tappi J 6(6):14–19

    Google Scholar 

  • Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H (2008a) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure, part 2: influence of autohydrolysis intensity. Holzforschung 62:653–658. https://doi.org/10.1515/HF.2008.133

    Article  CAS  Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol 154:109–113. https://doi.org/10.1016/j.biortech.2013.12.040

    Article  CAS  PubMed  Google Scholar 

  • Miao Q, Tian C, Chen L, Huang L, Zheng L, Ni Y (2015) Combined mechanical and enzymatic treatments for improving the Fock reactivity of hardwood kraft-based dissolving pulp. Cellulose 22:803–809. https://doi.org/10.1007/s10570-014-0495-9

    Article  CAS  Google Scholar 

  • Rahkamo L, Viikari L, Buchert J, Paakkari T, Suortti T (1998) Enzymatic and alkaline treatments of hardwood dissolving pulp. Cellulose 5:79–88 https://doi.org/10.1023/A:1009268713757

    Article  CAS  Google Scholar 

  • Roffael E (1988) Study on reactivity of differently prepared viscose pulps. Holzforschung 42(2):135–136. https://doi.org/10.1515/hfsg.1988.42.2.135

    Article  CAS  Google Scholar 

  • Sixta H (2006) Pulp properties and applications. In: Sixta H (ed) Handbook of pulp. Wiley, Weinheim, pp 1009–1069

    Chapter  Google Scholar 

  • Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B, Fink HP, Roder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11(1):73–83. https://doi.org/10.1023/B:CELL.0000014767.47330.90

    Article  CAS  Google Scholar 

  • Sixta H, Iakovlev M, Testova L, Roselli A, Hummel M, Borrega M, Heiningen A, Froschauer C, Schottenberger H (2013) Novel concepts of dissolving pulp production. Cellulose 20:1547–1561. https://doi.org/10.1007/s10570-013-9943-1

    Article  CAS  Google Scholar 

  • Strunk P (2012) Characterization of cellulose pulps and the influence of their properties on the process and production of viscose and cellulose ethers. Ph.D. Dissertation, Umeå University, Umeå

  • TAPPI T203 cm-99 (2009) Alpha-, beta- and gamma-cellulose in pulp, TAPPI Press, Atlanta

    Google Scholar 

  • TAPPI T218 sp 11 (2011) Forming handsheets for reflectance testing of pulp (Buchner funnel procedure). TAPPI Press, Atlanta

    Google Scholar 

  • TAPPI T230 om-08 (2013) Viscosity of pulp (capillary viscometer method). TAPPI Press, Atlanta

    Google Scholar 

  • TAPPI T235 cm-09 (2009) Alkali solubility of pulp at 25 °C. TAPPI Press, Atlanta

    Google Scholar 

  • Tian C, Zheng L, Miao Q, Nash C, Cao C, Ni Y (2013) Improvement in the Fock test for determining the reactivity of dissolving pulp. Tappi J 12(11):19–24

    Google Scholar 

  • Wang H, Pang B, Wu K, Kong F, Li B, Mu X (2014) Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochem Eng J 82:183–187. https://doi.org/10.1016/j.bej.2013.11.019

    Article  CAS  Google Scholar 

  • Wizani W, Krotscheck A, Schuster J, Lackner K (1994) Herstellung von Viskosezellstoffen. Voestalpine Industrieanlagen-GmbH, Lenzing-Aktiengesellschaft. Germany Patent PCT/AT93/00183

  • Wollboldt RP, Zuckerstätter G, Weber HK, Larsson PT, Sixta H (2010) Accessibility, reactivity and supramolecular structure of E. globulus pulps with reduced xylan content. Wood Sci Technol 44:533–546. https://doi.org/10.1007/s00226-010-0370-2

    Article  CAS  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase system. Biotechnol Bioeng 88(7):797–824. https://doi.org/10.1002/bit.20282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director of the Avantha Centre for Industrial Research & Development, Yamuna Nagar, Haryana, India, for providing the facilities to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitender Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sango, C., Kaur, P., Bhardwaj, N.K. et al. Bacterial cellulase treatment for enhancing reactivity of pre-hydrolysed kraft dissolving pulp for viscose. 3 Biotech 8, 271 (2018). https://doi.org/10.1007/s13205-018-1293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1293-0

Keywords

Navigation