Skip to main content
Log in

Molecular characterization of freshwater microalgae and nutritional exploration to enhance their lipid yield

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Biomass and lipid yield under nutrient depleted and supplemented conditions of N and Mg in two freshwater isolates, Chlorella sp. NC-MKM and Scenedesmus acutus NC-M2 from Meghalaya were investigated for biodiesel production. Both the strains, Chlorella sp. NC-MKM and Scenedesmus acutus NC-M2 are oleaginous in nature having lipid content of 40.2 ± 1.4 and 37.3 ± 2.6% DCW, respectively. The significant increase (92.8%) in lipid content was found in N-depleted condition while an increase (46.65%) in biomass yield was observed under Mg-supplemented condition in Chlorella sp. NC-MKM. Studying the interactive effects of nutrient depletion and supplementation, combination of N-depleted and Mg-supplemented condition was selected for further investigation to check enhanced lipid yield in Chlorella sp. NC-MKM. The results showed a significant increase in biomass yield, lipid yield and lipid content (30, 66.8, and 28.66%, respectively). Under this condition, accumulation of neutral lipid was also enhanced (47.17% M2 gated cells) compared to control (21.37% M2 gated cells). Further, FAMEs revealed that the relative percentage of saturated and mono-unsaturated fatty acids increased (66.16%) in Chlorella sp. NC-MKM compared to control that improves biodiesel properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belotti G, Bravi M, de Caprariis B, de Filippis P, Scarsella M (2013) Effect of nitrogen and phosphorus starvations on Chlorella vulgaris lipids productivity and quality under different trophic regimens for biodiesel production. Am J Plant Sci 4:44–51

    Article  CAS  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  CAS  PubMed  Google Scholar 

  • Darzins AI, Pienkos P, Edye L (2010) Current status and potential for algal biofuels production: a report to IEA Bioenergy Task 39 commercializing liquid biofuels from biomass. International Energy Agency Bioenergy Task 39

  • Deng X, Fei X, Li Y (2011) The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. Afr J Microbiol Res 5:260–270

    CAS  Google Scholar 

  • El-Kassas HY (2013) Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. Egypt J Aquat Res 39:233–239

    Article  Google Scholar 

  • Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkle BJ, Appleman D (1953) The effect of magnesium concentration on growth of Chlorella. Plant Physiol 28:664–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francisco EC, Neves DB, Jacob-Lopes E, Franco TF (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403

    Article  CAS  Google Scholar 

  • Gopinath A, Puhan S, Nagarajan G (2009) Relating the cetane number of biodiesel fuels to their fatty acid composition: a critical study. Proc Inst Mech Eng Part D: J Automob Eng 223:565–583

    Article  Google Scholar 

  • Gorain PC, Bagchi SK, Mallick N (2013) Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environ Technol 34:1887–1894

    Article  CAS  PubMed  Google Scholar 

  • Gwak Y, Hwang Y, Wang B, Kim M, Jeong J, Lee CG, Hu Q, Han D, Jin E (2014) Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J Exp Bot 65:4317–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepbasli A (2008) A key review on energetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev 12:593–661

    Article  Google Scholar 

  • Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huang GH, Chen G, Chen F (2009) Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenerg 33:1386–1392

    Article  CAS  Google Scholar 

  • Islam MA, Magnusson M, Brown RJ, Ayoko GA, Nabi MN, Heimann K (2013) Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6:5676–5702

    Article  CAS  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2006) Analyzing biodiesel standards and other methods. J Am Oil Chem Soc 83:823–833

    Article  CAS  Google Scholar 

  • Krisnangkura K (1986) A simple method for estimation of cetane index of vegetable oil methyl esters. J Am Oil Chem Soc 63:552–553

    Article  CAS  Google Scholar 

  • Ladommatos N, Parsi M, Knowles A (1996) The effect of fuel cetane improver on diesel pollutant emissions. Fuel 75:8–14

    Article  CAS  Google Scholar 

  • Li Y, Mu J, Chen D, Han F, Xu H, Kong F, Xie F, Feng B (2013) Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic Cu(II) stressed (HCuS) coupling cultivation. Bioresour Technol 148:283–292

    Article  CAS  PubMed  Google Scholar 

  • Li YX, Zhao FJ, Yu DD (2015) Effect of nitrogen limitation on cell growth, lipid accumulation and gene expression in Chlorella sorokiniana. Braz Arch Biol Technol 58:462–467

    Article  CAS  Google Scholar 

  • Li Huang J, Xu T, Li L, Wang T, Deng XY (2014) Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions. Ann Microbiol 64:1247–1256

    Article  CAS  Google Scholar 

  • Malcata FX (2011) Microalgae and biofuels: a promising partnership? Trends Biotechnol 29:542–549

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mallik N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Almeida R, Caetano NS (2013) Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta. Chem Eng Trans 32:973–978

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  • Moon-van der Staay SY, Gerog WM, Guillou L, Vaulot D (2000) Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol oceanogr 45:98–109

    Article  CAS  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  CAS  PubMed  Google Scholar 

  • Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., bum 110088: evaluation for biodiesel production. Biomass Bioenerg 37:60–66

    Article  CAS  Google Scholar 

  • Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Herdman H (1992) Pasteur culture collection of cyanobacteria catalogue & taxonomic handbook. 1. Catalogue of strains. Institut Pasteur, Paris

    Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satpati GG, Pal R (2015) Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining—an improved technique. Ann Microbiol 65:937–949

    Article  CAS  Google Scholar 

  • Sharma AK, Sahoo PK, Singhal S, Patel A (2016) Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech 6:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (2011) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190. U.S. Department of Energy’s Office of Fuels Development, Golden

    Google Scholar 

  • Soylu EN, Gonulol A (2012) Morphological and 18S rRNA analysis of coccoid green algae isolated from lakes of Kizilirmak Delta. Turk J Biol 36:247–254

    Google Scholar 

  • Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol 155:204–212

    Article  CAS  PubMed  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896

    Article  CAS  PubMed  Google Scholar 

  • Tale M, Ghosh S, Kapandnis B, Kale S (2014) Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresour Technol 169:328–335

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6 (2013) Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20

    Article  CAS  Google Scholar 

  • Ulloa G, Otero A, Sánchez M, Sineiro J, Núñez MJ, Fábregas J (2012) Effect of Mg, Si, and Sr on growth and antioxidant activity of the marine microalga Tetraselmis suecica. J Appl Phycol 24:1229–1236

    Article  CAS  Google Scholar 

  • Wagenen JV, Miller TW, Hobbs S, Hook P, Crowe B, Huesmann M (2012) Effect of temperature and light on fatty acid production in Nannochloropsis salina. Energies 5:731–740

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Yeh KL, Chang JS (2011) Nitrogen starvation strategies and photobioreactor design for enhancing lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Biotechnol J 6:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pei H, Chen S, Jiang L, Hou Q, Yang Z, Yu Z (2017) Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour Technol 250:449–456

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from DBT and CSIR, Government of India has been thankfully acknowledged. Authors are thankful to the Head of department, Biotechnology and Bioinformatics, North-Eastern Hill University for providing the necessary facilities. Also, authors thank to Guwahati Biotech Park, Assam, India for support in GC-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Chaurasia.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The manuscript does not contain experiments on animals and human; hence ethical permission not required.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M.K., Chaurasia, N. Molecular characterization of freshwater microalgae and nutritional exploration to enhance their lipid yield. 3 Biotech 8, 238 (2018). https://doi.org/10.1007/s13205-018-1248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1248-5

Keywords

Navigation