Skip to main content

Advertisement

Log in

Evaluation of molasses-melanoidin decolourisation by potential bacterial consortium discharged in distillery effluent

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The extracted sugarcane molasses-melanoidins showed the presence of Mn (8.20), Cr (2.97), Zn (16.61), Cu (2.55), Fe (373.95), Pb (2.59), and Ni (4.18 mg L−1) along with mixture of other organic compounds which have endocrine-disrupting chemicals (EDCs) properties. A consortium of aerobic bacteria comprising Klebsiella pneumoniae (KU321273), Salmonella enteric (KU726954), Enterobacter aerogenes (KU726955), and Enterobacter cloacae (KU726957) showed the optimum decolourisation of molasses-melanoidins up to 81% through co-metabolism in the presence of glucose (1.0%) and peptone (0.2%) as a carbon and nitrogen source, respectively. The absorption spectrum scanning by UV–visible spectrophotometer between 200 and 700 nm revealed reductions of absorption spectrum of organic compounds present in bacterial degraded sample of melanoidins in range of 200–450 nm compared to control. The degradation and decolourisation of melanoidins by bacterial consortium was noted by induction of manganese peroxidase and laccase activities in sample supernatant. Furthermore, the TLC and HPLC analysis of bacterial decolourised melanoidins also showed degradation and reduction of absorption peak at (295 nm), respectively. Furthermore, FT-IR and GC–MS analysis also showed the change of functional group and disappearance of ion peaks. This indicated the degradation and depolymerisation of melanoidins and cleavage of C=C, C=O and C≡N conjugated bonds which resulted in reduction of colour. The metabolic analysis also showed the disappearance of some organic compounds and generation of new metabolites. Furthermore, the seed germination test using Phaseolus mungo L. showed toxicity reduction in decolourized effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (American Public Health Association) (2012) Standard method for examination of water and wastewater, 22nd edn. APHA, AWWA and WEF, Washington, DC

    Google Scholar 

  • Arora DS, Chander M, Gill PK (2002) Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int Biodeterior Biodegrad 50:115–120

    Article  CAS  Google Scholar 

  • Bharagava R, Chandra R (2010) Effect of bacteria treated and untreated post-methanated distillery effluent (PMDE) on seed germination, seedling growth and amylase activity in Phaseolus mungo L. J Hazard Mater 180:730–734

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R, Rai V (2009) Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery effluent. World J Microbiol Biotechnol 25(5):737–744

    Article  CAS  Google Scholar 

  • Billaud C, Maraschin C, Nicolas J (2004) Inhibition of polyphenoloxidase from apple by Maillard reaction products prepared from glucose or fructose with l-cysteine under various conditions of pH and temperature. LWT 37:69–78

    Article  CAS  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Sette LD (2012) The production of ligninolytic enzymes by marine-derived basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. Water Air Soil Pollut 223(5):2333–2345

    Article  CAS  Google Scholar 

  • Chandra R, Kumar V (2017a) Detection of Bacillus and Stenotrophomonas species growing in an organic acid and endocrine-disrupting chemicals rich environment of distillery spent wash and its phytotoxicity. Environ Monit Assess 189:26

    Article  Google Scholar 

  • Chandra R, Kumar V (2017b) Detection of androgenic-mutagenic compounds and potential autochthonous bacterial communities during in situ bioremediation of post methanated distillery sludge. Front Microbiol 8:887

    Article  Google Scholar 

  • Chandra R, Yadav S, Mohan D (2008) Effect of distillery sludge on seed germination and growth parameters of green gram (Phaseolus mungo L.). J Hazard Mater 152:431–439

    Article  CAS  Google Scholar 

  • Chandra R, Kumar V, Yadav S (2017) Extremophilic ligninolytic enzymes. In: Sani R, Krishnaraj R (eds) Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. Springer, Cham

    Google Scholar 

  • Chandra R, Kumar V, Tripathi S, Sharma P (2018) Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in situ phytoremediation. Ecol Eng 111:143–156

    Article  Google Scholar 

  • Chaudhari PK, Mishra IM, Chand S (2005) Catalytic thermal treatment (catalytic thermolysis) of a biodigester effluent of an alcohol distillery plant. Ind Eng Chem Res 44(15):5518–5525

    Article  CAS  Google Scholar 

  • Chaudhari PK, Mishra IM, Chand S (2007) Decolourization and removal of chemical oxygen demand (COD) with energy recovery: treatment of biodigester effluent of a molasses-based alcohol distillery using inorganic coagulants. Colloids Surf A Physicochem Eng Asp 296(1–3):238–247

    Article  CAS  Google Scholar 

  • Davídek T, Devaud S, Robert F, Blank I (2006) Sugar fragmentation in the Maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic β-dicarbonyl cleavage mechanism. J Agric Food Chem 54(18):6667–6676

    Article  Google Scholar 

  • de Sousa Andrade LN, De Lima TM, Curi R, de Lauro Castrucci AM (2005) Toxicity of fatty acids on murine and human melanoma cell lines. Toxicol In Vitro 19:553–560

    Article  Google Scholar 

  • Echavarría AP, Pagán J, Ibarz A (2013a) Antioxidant activity of the melanoidins fraction formed from d-glucose and d-fructose with l-asparagine in the Maillard reaction. Sci Agropecu 4:45–54

    Article  Google Scholar 

  • Echavarría AP, Pagán J, Ibarz A (2013b) Optimization of Maillard reaction products isolated from sugar-amino acid model system and their antioxidant activity. Afinidad LXX 562:86–92

    Google Scholar 

  • Echavarría AP, Pagán J, Ibarz A (2014) Kinetics of color development of melanoidins formed from fructose/amino acid model systems. Food Sci Technol Int 20(2):119–126

    Article  Google Scholar 

  • Ghosh M, Verma SC, Mengoni A, Tripathi AK (2004) Enrichment and identification of bacteria capable of reducing chemical oxygen demand of anaerobically treated molasses spent wash. J Appl Microbiol 96:1278–1286

    Article  CAS  Google Scholar 

  • Gonzalez T, Terron MC, Yague S, Zapico E, Galletti GC, Gonzalez AE (2000) Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp I-62 (CECT 20197). Rapid Commun Mass Spectrom 14:1417–1424

    Article  CAS  Google Scholar 

  • González T, Terrón MC, Yagüe S, Junca H, Carbajo JM, Zapico EJ, Silva R, Arana-Cuenca A, Téllez A, González AE (2008) Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62. Res Microbiol 159(2):103–109

    Article  Google Scholar 

  • Gu FL, Kim J, Abbas S, Zhang XM, Xia SQ, Chen ZX (2010) Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose. Food Chem 120:505–511

    Article  CAS  Google Scholar 

  • Hayase F, Kim SB, Kato H (1984) Decolorization and degradation products of the melanoidins by hydrogen peroxide. Agric Biol Chem 48(11):2711–2717

    CAS  Google Scholar 

  • Jenkins R, Wilson EM, Angus RA, Howell WM, Kirk M (2003) Androstenedione and progesterone in the sediment of a river receiving paper mill effluent. Toxicol Sci 73:53–59

    Article  CAS  Google Scholar 

  • Kalavathi DF, Uma L, Subramanian G (2001) Degradation and metabolization of the pigment—melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzyme Microb Technol 29:246–251

    Article  Google Scholar 

  • Kamaya Y, Kurogi Y, Suzuki K (2003) Acute toxicity of fatty acids to the freshwater green alga Selenastrum capricornutum. Environ Toxicol 18:289–294

    Article  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. J Arch Microbiol 117:177–185

    Google Scholar 

  • Koster IW, Cramert A (1987) Inhibition of methanogenesis from acetate in granular sludge by long-chain fatty acids. Appl Environ Microbiol 53(2):403–409

    CAS  Google Scholar 

  • Kumar P, Chandra R (2006) Decolourisation and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus spp. Bioresour Technol 97:2096–2102

    Article  CAS  Google Scholar 

  • Kumar V, Chandra R (2018) Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard products at different nutritional and environmental conditions. World J Microbiol Biotechnol 34:82

    Google Scholar 

  • Liang Z, Wang Y, Zhou Y, Liu H, Wu Z (2009) Variables affecting melanoidins removal from molasses wastewater by coagulation/flocculation. Sep Purif Technol 68:382–389

    Article  CAS  Google Scholar 

  • Liu M, Zhu H, Dong B, Zheng Y, Yu S, Gao C (2013) Submerged nanofiltration of biologically treated molasses fermentation wastewater for the removal of melanoidins. Chem Eng J 223:388–394

    Article  CAS  Google Scholar 

  • Martins S, Van Boekel M (2003) Melanoidins extinction coefficient in the glucose/glycine Maillard reaction. Food Chem 83:135–142

    Article  CAS  Google Scholar 

  • Metcalf, Eddy (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw Hill Higher Education, New York

    Google Scholar 

  • Migo VP, Del Rosario EJ, Matsumura M (1997) Flocculation of melanoidins induced by inorganic ions. J Ferment Bioeng 83:287–291

    Article  CAS  Google Scholar 

  • Miyata N, Iwahori K, Fujita M (1998) Manganese-independent and -dependent decolorization of melanoidin by extracellular hydrogen peroxide and peroxidases from Coriolus hirsutus pellets. J Ferment Bioeng 85(5):550–553

    Article  CAS  Google Scholar 

  • Miyata N, Mori T, Iwahori K, Fujita M (2000) Microbial decolorization of melanoidin-containing wastewaters: combined use of activated sludge and the fungus Coriolus hirsutus. J Biosci Bioeng 89:145–150

    Article  CAS  Google Scholar 

  • Mohana S, Desai C, Madamwar D (2007) Biodegradation and decolorization of anaerobically treated distillery spent wash by a novel bacterial consortium. Bioresour Technol 98(2):333–339

    Article  CAS  Google Scholar 

  • Muhammad F, Monteiro-Riviere NA, Riviere JE (2005) Comparative in vivo toxicity of topical JP-8 jet fuel and its individual hydrocarbon components: identification of tridecane and tetradecane as key constituents responsible for dermal irritation. Toxicol Pathol 33:258–266

    Article  CAS  Google Scholar 

  • OECD (2003) Guideline for testing of chemicals, terrestrial plant tests: 208: seedling emergence and seedling growth test. pp 1–19 (draft)

  • Onyango M, Kittinya J, Hadebe N, Ojijo V, Ochieng A (2011) Sorption of melanoidin onto surfactant modified zeolite. Chem Ind Chem Eng Q 17(4):385–395

    Article  CAS  Google Scholar 

  • Pant D, Adholeya A (2007) Identification, ligninolytic enzyme activity and decolorization potential of two fungi isolated from a distillery effluent contaminated site. Water Air Soil Pollut 183:165–176

    Article  CAS  Google Scholar 

  • Quinn BP, Bernier UR, Geden CJ, Hogsette JA, Carlson DA (2007) Analysis of extracted and volatile components in blackstrap molasses feed as candidate house fly attractants. J Chromatogr 1139:279–284

    Article  CAS  Google Scholar 

  • Ravikumar R, Vasanthi NS, Saravanan K (2011) Single factorial experimental design for decolorizing anaerobically treated distillery spent wash using Cladosporium cladosporioides. J Environ Sci Technol 8:97–106

    Article  CAS  Google Scholar 

  • Santal AR, Singhb NP, Saharan BS (2011) Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG5 of Alcaligenes faecalis. J Hazard Mater 193:319–324

    Article  CAS  Google Scholar 

  • Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manag 86(3):481–497

    Article  CAS  Google Scholar 

  • Singh VK, Kavita K, Prabhakaran R, Jha B (2013) Cis-9-octadecenoic acid from the rhizospheric bacterium Stenotrophomonas maltophilia BJ01 shows quorum quenching and anti-biofilm activities. Biofouling 29:855–867

    Article  CAS  Google Scholar 

  • Sirianuntapiboon S, Phothilangka PO (2004) Decolourization of molasses wastewater by a strain no. BP103 of acetogenic bacteria. J Bioresour Technol 92:31–39

    Article  CAS  Google Scholar 

  • Taylor CD, Smith OS, Gagosian R (1981) Use of microbial enrichments for the study of anaerobic degradation of cholesterol. Geochim Coscochim Acta 45:2161–2168

    Article  CAS  Google Scholar 

  • Tiwari S, Gaur R, Singh R (2012) Decolorization of a recalcitrant organic compound (melanoidin) by a novel thermotolerant yeast, Candida tropicalis RG-9. BMC Biotechnol 12:30

    Article  CAS  Google Scholar 

  • Tiwari S, Rai P, Yadav SK, Gaur R (2013) A novel thermotolerant Pediococcus acidilactici B-25 strain for color, COD, and BOD reduction of distillery effluent for end use applications. Environ Sci Pollut Res Int 20(6):4046–4058

    Article  CAS  Google Scholar 

  • Tiwari S, Gaur R, Singh A (2014) Distillery spent wash decolourisation by a noval consortium of Pedicoccus acidilactici and Candida tropicalis under static condition. Pak J Biol Sci 17(6):780–791

    Article  CAS  Google Scholar 

  • USEPA (2012) US environmental protection agency endocrine disruptor screening program universe of chemicals

  • Wang H, Qian H, Yao W (2011) Melanoidins produced by the Maillard reaction: structure and biological activity. Food Chem 128(3):573–584

    Article  CAS  Google Scholar 

  • Wedzicha BL, Kaputo MT (1992) Melanoidins from glucose and glycine: composition, characteristics and reactivity towards sulphite ion. Food Chem 43(5):359–367

    Article  CAS  Google Scholar 

  • Wolfrom ML, Kolb DN, Langer AW (1953) Chemical interactions of amino compounds and sugars. VII, pH dependency. J Am Chem Soc 75:3471–3473

    Article  CAS  Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157(2):174–209

    Article  CAS  Google Scholar 

  • Yadav S, Chandra R (2012) Biodegrdation of organic compounds of molasses melanoidins (MM) from biomethanated distillery distillery spent wash (BMDS) during the decolourisation by potential bacterial consortium. Biodegradation 23:609–620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Instrumentation facilities for scanning electron microscopy (SEM) from central facilities, CSIR-IITR, Lucknow, Uttar Pradesh, India are gratefully acknowledged. The financial assistance from DBT, New Delhi, India as the Project no. BT/PR13922/BCE/8/1129/2015 to Prof. Ram Chandra. Simultaneously, Rajiv Gandhi National Senior Research Fellowship (RGNSRF) from UGC, New Delhi, to Mr. Vineet Kumar, Ph.D. Scholar is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Chandra.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest of any type.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, R., Kumar, V. & Tripathi, S. Evaluation of molasses-melanoidin decolourisation by potential bacterial consortium discharged in distillery effluent. 3 Biotech 8, 187 (2018). https://doi.org/10.1007/s13205-018-1205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1205-3

Keywords

Navigation