Skip to main content
Log in

Study of enzymatic saccharification of Agave leaves biomass to yield fermentable sugars

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Agave is a good source of polysaccharides for the production of fermentable sugars as sustainable bioenergy feedstock solutions for semi-arid and arid lands. This plant grows in arid areas, which correspond to a large territory in northern Mexico. Having lignocellulose as the polysaccharide of interest, the information for the enzymatic saccharification of this kind of material is limited. Agave cell walls have a unique recalcitrant nature, but having a high cellulose content, makes this plant material an interesting research subject. In this work, acidic, alkaline and aqueous pretreatments were evaluated to generate a biomass rich in cellulose. The saccharification of pretreated Agave leaves-residue was evaluated under experimental designs to identify the most suitable conditions for enzymatic hydrolysis. Maximum value obtained was 31% glucose, which further increased to 41.4% at extended hydrolysis time of 96 h. The highest cellulose-saccharification reached was up to 61.81%, making Agave atrovirens an alternative for bioethanol production in its geographical area of cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdeshahian P, Samat N, Hamid AA, Yusoff W (2011) Solid substrate fermentation for cellulase production using palm kernel cake as a renewable lignocellulosic source in packed-bed bioreactor. Biotechnol Bioprocess Eng 16:238–244

    Article  CAS  Google Scholar 

  • Arenas-Cárdenas P, López-López A, Moeller-Chávez G, León-Becerril E (2016) Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valor. doi:10.1007/s12649-016-9559-4

    Google Scholar 

  • Arreola-Vargas J, Ojeda-Castillo V, Snell-Castro R, Corona-González RI, Alatriste-Mondragón F, Méndez-Acosta HO (2015) Bioresource Technology Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield. Bioresour Technol 181:191–199

    Article  CAS  Google Scholar 

  • Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88

    Article  Google Scholar 

  • Barrera I, Amezcua-Allieri M, Estupiñan L, Martínez T, Aburto J (2016) Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue Agave bagasses. Chem Eng Res Des 107:91–101

    Article  CAS  Google Scholar 

  • Black C, Osmond B (2003) Crassulacean acid metabolism photosynthesis: “working the night shift’’. Photosynth Res 76:329–341

    Article  CAS  Google Scholar 

  • Cara C, Ruiz E, Oliva J, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876

    Article  CAS  Google Scholar 

  • Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of Agave bagasse to fuel ethanol. Appl Energy 113:277–286

    Article  CAS  Google Scholar 

  • Corona-González R, Varela-Almanza K, Arriola-Guevara E, Martínez-Gómez A, Pelayo-Ortíz C, Toriz G (2016) Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor. Bioresour Technol 205:15–23

    Article  Google Scholar 

  • Da Silva Martins L, Candida S, Carvalho A (2015) Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour Technol 191:312–321

    Article  Google Scholar 

  • Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. GCB Bioenergy 3:68–78

    Article  CAS  Google Scholar 

  • Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and Agave bagasse. Bioresour Technol 100:1238–1245

    Article  Google Scholar 

  • Hidayat B, Felby C, Johansen K, Thygesen L (2012) Cellulose is not just cellulose: a review of dislocations as reactive sites in the enzymatic hydrolysis of cellulose microfibrils. Cellulose 19:1482–1493

    Article  Google Scholar 

  • Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletchske B, Singh A, Karp M (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sustain Energy Rev 55:249–272

    Article  CAS  Google Scholar 

  • Li Y, Arakawa G, Tokuda G, Watanabe H, Arioka M (2017) Heterologous expression in Pichia pastoris and characterization of a β-glucosidase from the xylophagous cockroach Panesthia angustipennis spadica displaying high specific activity for cellobiose. Enzyme Microb Technol 97:104–113

    Article  CAS  Google Scholar 

  • Medina-Morales MA, Contreras-Esquivel JC, De la Garza-Toledo H, Rodriguez R, Aguilar CN (2011) Enzymatic bioconversion of Agave leaves fiber hydrolysis using Plackett-Burman design. Am J Agric Biol Sci 6:480–485

    Article  CAS  Google Scholar 

  • Montiel C, Hernández-Meléndez O, Vivaldo-Lima E, Hernández-Luna M, Bárzana E (2016) Enhanced bioethanol production from Blue Agave biomass in a combined extrusión-saccharification process. Bioenerg Res 8:1005–1014

    Article  Google Scholar 

  • Moxley G, Gaspar A, Higgins D, Xu H (2012) Structural changes of corn stover lignin during acid pretreatment. J Ind Microbiol Biotechnol 39:1289–1299

    Article  CAS  Google Scholar 

  • Nava-Cruz NY, Medina-Morales MA, Martinez JL, Rodriguez R, Aguilar CN (2014) Agave biotechnology: an overview. Crit Rev Biotechnol 8551:1–14

    Google Scholar 

  • Ogeda T, Silv I, Fidale L, El Seoud O, Petri D (2012) Effect of cellulose physical characteristics especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free of immobilized cellulase. J Biotechnol 157:246–252

    Article  CAS  Google Scholar 

  • Pedersen M, Meyer S (2010) Lignocellulose pretreatment severity: relating pH to biomatrix opening. New Biotechnol 6:739–750

    Article  Google Scholar 

  • Pihlajaniemi V, Sipponen MH, Pastinen O, Lehtomäki I, Laakso S (2015) Yield optimization and rational function modelling of enzymatic hydrolysis of wheat straw pretreated by NaOH-delignification, autohydrolysis and their combination. Green Chem 17:1683–1691

    Article  CAS  Google Scholar 

  • Rodríguez-Durán LV, Contreras-Esquivel JC, Rodríguez R, Prado-Barragán LA, Aguilar CN (2011) Optimization of tannase production by Aspergillus niger in solid-state packed-bed bioreactor. J Microbiol Biotechnol 21:960–967

    Article  Google Scholar 

  • Saha B, Cotta M (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy 32:971–977

    Article  CAS  Google Scholar 

  • Samanta AK, Senani S, Kolte AP, Sridhar M, Sampath KT, Jayapal N, Devi A (2012) Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod Process 90:466–474

    Article  CAS  Google Scholar 

  • Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P, López G, Saade H, Medina-Morales MA, Ramos-González R, Aguilar CN, Ilyina A (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40:9–22

    Article  Google Scholar 

  • Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Sosa-Aguirre CR, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38:725–732

    Article  CAS  Google Scholar 

  • Sepúlveda L, Aguilera-Carbó A, Ascacio-Valdés J, Rodríguez-Herrera R, Martínez- Hernández JL, Aguilar CN (2012) Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid state culture using pomegranate shell powder as a support. Proc Biochem 47:2199–2203

    Article  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  • Tabka MG, Herpoel-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39:897–902

    Article  CAS  Google Scholar 

  • Vallejos ME, Felissia FE, Kruyeniski J, Area MC (2015) Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Ind Crops Prod 67:1–6

    Article  CAS  Google Scholar 

  • Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Carbohydrate methodology, metabolism and nutritional implications in dairy cattle. J Dairy Sci 74:3583–3597

    Article  Google Scholar 

  • Yang L, Lu M, Carl S, Mayer JA, Cushman JC, Tian E, Lin H (2015) Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass Bioenerg 76:43–53

    Article  CAS  Google Scholar 

  • Zhang Q, Cai W (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenerg 32:1130–1135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Medina-Morales M would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the scholarship given for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal N. Aguilar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Morales, M.A., Soto-Cruz, O., Contreras-Esquivel, J.C. et al. Study of enzymatic saccharification of Agave leaves biomass to yield fermentable sugars. 3 Biotech 7, 55 (2017). https://doi.org/10.1007/s13205-017-0714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0714-9

Keywords

Navigation