Skip to main content

Advertisement

Log in

A review on chimeric xylanases: methods and conditions

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Multi-functional enzymes are one of the nature’s solutions to facilitate metabolic pathways, thus several reactions are regulated and performed simultaneously on one polypeptide chain. Inspired by nature, artificial chimeric proteins have been designed to reduce the production costs and improve the performance. One of the interesting applications of this method is in the plant-based industries such as feed additive, waste treatment, biofuel production, and pulp and paper bleaching. In fact, the heterogeneous texture of plants needs using a combination of different enzymes to achieve an optimal quality in the manufacturing process. Given that xylans are the most abundant non-cellulosic polysaccharides in nature, xylanases are widely utilized in the mentioned industries. In this regard, several studies have been conducted to develop the relevant chimeric enzymes. Despite the successes that have been attained in this field, misfolding, functional or structural interference, and linker breakage have been reported in some cases. The present paper reviews the research to introduce the prerequisites to design an appropriate chimeric xylanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS (2011) Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl Environ Microbiol 77:4859–4866

    Article  CAS  Google Scholar 

  • Ahsan MM, Kaneko S, Wang Q, Yura K, Go M, Hayash K (2001) Capacity of thermomonospora alba XylA to impart thermostability in family F/10 chimeric xylanases. Enzyme Microb Technol 28:8–15

    Article  CAS  Google Scholar 

  • Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Chen X, Zaro J, Shen W-C (2013) Fusion Protein Linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    Article  CAS  Google Scholar 

  • Chen C-C, Ko T-P, Huang J-W, Guo R-T (2015) Heat- and alkaline-stable xylanases: application, protein structure and engineering. ChemBioEng Rev 2:95–106

    Article  CAS  Google Scholar 

  • Chichili VPR, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein–protein interactions. Protein Sci 22:153–167

    Article  Google Scholar 

  • Cota J, Oliveira LC, Damásio ARL, Citadini AP, Hoffmam ZB, Alvarez TM, Codima CA, Leite VBP, Pastore G, Oliveira-Neto Md et al (2013) Assembling a xylanase–lichenase chimera through all-atom molecular dynamics simulations. Biochim Biophys Acta 1834:1492–1500

    Article  CAS  Google Scholar 

  • Diogo JA, Hoffmam ZB, Zanphorlin LM, Cota J, Machado CB, Wolf LD, Squina F, Damásio ARL, Murakami MT, Ruller R (2015) Development of a chimeric hemicellulase to enhance the xyloseproduction and thermotolerance. Enzyme Microb Technol 69:31–37

    Article  CAS  Google Scholar 

  • Elleuche S (2015) Bringing functions together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol 99:1545–1556

    Article  CAS  Google Scholar 

  • Elleuche S, Piascheck H, Antranikian G (2011) Fusion of the OsmC domain from esterase EstO confers thermolability to the cold-active xylanase Xyn8 from Pseudoalteromonas arctica. Extremophiles 15:311–317

    Article  CAS  Google Scholar 

  • Fan Z, Wagschal K, Lee CC, Kong Q, Shen KA, Maiti IB, Yuan L (2009a) The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol Bioeng 102:684–692

    Article  CAS  Google Scholar 

  • Fan Z, Werkman JR, Yuan L (2009b) Engineering of a multifunctional hemicellulase. Biotechnol Lett 31:751–757

    Article  CAS  Google Scholar 

  • Flint HJ, Martin J, McPherson CA, Daniel AS, Zhang JX (1993) A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol 175:2943–2951

    Article  CAS  Google Scholar 

  • Gibbs MD, Reeves RA, Choudhary PR, Bergquist PL (2010) Alteration of the pH optimum of a family 11 xylanase, XynB6 of Dictyoglomus thermophilum. N Biotechnol 27:803–809

    Article  CAS  Google Scholar 

  • George RA, Heringa J (2003) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15:871–879

    Article  Google Scholar 

  • Guo N, Zheng J, L-s Wu, Tian J, H-b Zhou (2013) Engineered bifunctional enzymes of endo-1,4-β-xylanase/endo-1,4-β-mannanase were constructed for synergistically hydrolyzing hemicellulose. J Mol Catal B Enzyme 97:311–318

    Article  CAS  Google Scholar 

  • Kaneko S, Kuno A, Fujimoto Z, Shimizu D, Machida S, Sato Y, Yura K, Go M, Mizuno H, Taira K et al (1999) An investigation of the nature and function of module 10 in a family F/10 xylanase FXYN of Streptomyces olivaceoviridis E-86 by module shu¥ing with the Cex of Cellulomonas fimi and by site-directed mutagenesis. FEBS Lett 460:61–66

    Article  CAS  Google Scholar 

  • Kaneko S, Ichinose H, Fujimoto Z, Kuno A, Yura K, Go M, Mizuno H, Kusakabe I, Kobayashi H (2004) Structure and function of a family 10 β-xylanase chimera of Streptomyces olivaceoviridis E-86 FXYN and Cellulomonas fimi Cex. J Biol Chem 279:26619–26626

    Article  CAS  Google Scholar 

  • Khandeparker R, Numan MT (2008) Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 35:635–644

    Article  CAS  Google Scholar 

  • Kim HM, Jung S, Lee KH, Song Y, Bae H-J (2015) Improving lignocellulose degradation using xylanase–cellulase fusion protein with a glycine–serine linker. Int J Biol Macromol 73:215–221

    Article  CAS  Google Scholar 

  • Levasseur A, Navarro D, Punt PJ, Belaıch J-P, Asther M, Record E (2005) Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products. Appl Environ Microbiol 71:8132–8140

    Article  CAS  Google Scholar 

  • Li C, Zhang G (2014) The fusions of elastin-like polypeptides and xylanase self-assembled into insoluble active xylanase particles. J Biotechnol 177:60–66

    Article  CAS  Google Scholar 

  • Liu L, Wang L, Zhang Z, Guo X, Li X, Chen H (2012) Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase. BMC Biotechnol. doi:10.1186/147267501228

    Google Scholar 

  • Lu P, Feng M-G (2008) Bifunctional enhancement of a β-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol 79:579–587

    Article  CAS  Google Scholar 

  • Lu P, Feng M-G, Li W-F, Hu C-X (2006) Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli. FEMS Microbiol Lett 261:224–230

    Article  CAS  Google Scholar 

  • Mesta L, Rascle C, Durand R, Fevre M (2001) Construction of a chimeric xylanase using multidomain enzymes from Neocallimastix frontalis. Enzyme Microb Technol 29:456–463

    Article  CAS  Google Scholar 

  • Nishtmoto M, Kitaoka M, Hayashi K (2002) Employing chimeric xylanases to identify regions of an alkaline xylanase participating in enzyme activity at basic pH. J Biosci Bioeng 94:395–400

    Article  Google Scholar 

  • Pai C-K, Wang H-T, Guo R-T, Liu J-R (2012) The construction of bifunctional fusion xylanolytic enzymes and the prediction of optimum reaction conditions for the enzyme activity. BioResources 7:5647–5665

    Article  Google Scholar 

  • Qiao J, Cao Y (2012) In-fusion expression and characterization of β-xylanase and β-1,3-1,4-glucanase in Pichia pastoris. Biologia 67:649–653

    Article  CAS  Google Scholar 

  • Ribeiro LF, Furtado GP, Lourenzoni MR, Costa-Filho AJ, Santos CR, Nogueira SCP, Betini JA, Polizeli MdLTM, Murakami MT, Ward RJ (2011) Engineering bifunctional laccase-xylanase chimeras for improved catalytic performance. J Biol Chem 286:43026–43038

    Article  CAS  Google Scholar 

  • Rizk M, Elleuche S, Antranikian G (2015) Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT). Biotechnol Lett 37:139–145

    Article  CAS  Google Scholar 

  • Schmidt SR (2013) Fusion protein technologies for biopharmaceuticals applications and challenges. John Wiley & Sons, Canada

    Book  Google Scholar 

  • Shi P, Tian J, Yuan T, Liu X, Huang H, Bai Y, Yang P, Chen X, Wu N, Yao B (2010) Paenibacillus sp strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl Environ Microbiol 76:3620–3624

    Article  CAS  Google Scholar 

  • Smith MA, Arnold FH (2014) Designing libraries of chimeric proteins using SCHEMA recombination and RASPP. Methods Mol Biol 1179:335–343

    Article  Google Scholar 

  • Stephens DE, Khan FI, Singh P, Bisetty K, Singh S, Permaul K (2014) Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. J Biotechnol 187:139–146

    Article  CAS  Google Scholar 

  • Wang Q, Xia T (2007) Enhancement of the thermostability and hydrolytic activity of GH10 xylanase by module shuffling between Cellulomonas fimi Cex and Thermomonospora alba XylA. World J Microbiol Biotechnol 23:1047–1055

    Article  CAS  Google Scholar 

  • Wang R, Xue Y, Wu X, Song X, Peng J (2010) Enhancement of engineered trifunctional enzyme by optimizing linker peptides for degradation of agricultural by-products. Enzyme Microb Technol 47:194–199

    Article  CAS  Google Scholar 

  • Xue Y, Peng J, Wang R, Song X (2009) Construction of the trifunctional enzyme associating the Thermoanaerobacter ethanolicus xylosidase-arabinosidase with the Thermomyces lanuginosus xylanase for degradation of arabinoxylan. Enzyme Microb Technol 45:22–27

    Article  CAS  Google Scholar 

  • Yu K, Liu C, Kim B-G, Lee D-Y (2015) Synthetic fusion protein design and applications. Biotechnol Adv 33:155–164

    Article  CAS  Google Scholar 

  • Zhang J, Yun J, Shang Z, Zhang X, Pan B (2009) Design and optimization of a linker for fusion protein construction. Prog Nat Sci 19:1197–1200

    Article  CAS  Google Scholar 

  • Zhang S, Zhang K, Chen X, Chu X, Sun F, Dong Z (2010) Five mutations in N-terminus confer thermostability on mesophilic xylanase. Biochem Biophys Res Commun 395:200–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Saadat.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadat, F. A review on chimeric xylanases: methods and conditions. 3 Biotech 7, 67 (2017). https://doi.org/10.1007/s13205-017-0660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0660-6

Keywords

Navigation