Skip to main content
Log in

Comparison of catalytic activity and antimicrobial properties of palladium nanoparticles obtained by Aloe barbadensis and Glycine max extracts, and chemical synthesis

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Palladium nanoparticles (PdNPs) were synthesized from potassium tetrachloropalladate (K2PdCl4) with chemical synthesis using NaBH4, and with Aloe barbadensis and Glycine max aqueous extracts as a reducing agent. The synthesized PdNPs were quasi-spherical with 34.24 ± 5.14 nm for A. barbadensis, 19.90 ± 2.84 nm for G. max, and 11.74 ± 1.58 nm for chemically produced PdNPs. Hydrodynamic size and zeta potential were 3174.33 ± 640.9 nm and -18.5 ± 2.11 mV for A. barbadensis; 104.4 ± 0.44 nm and -29.47 ± 0.65 mV for G. max; and 1572.33 ± 110.17 nm and -21.17 ± 1.72 mV for chemically synthesized PdNPs. G. max PdNPs showed better stability than A. barbadensis PdNPs. Spectroscopy analysis suggests that hydroxyl and phenolic compounds participate in a redox reaction with tetrachloropalladate ion. High-Pressure Ion Chromatography (HPIC) confirms the participation of reducing sugars in a redox reaction. 1’-1’ diphenyl picryl-hydrazyle (DPPH) scavenging of G. max was 40.61 ± 2.73%, A. barbadensis of 26.21 ± 4.61%, and chemical PdNPs of 29.85 ± 6%. All PdNPs catalyzed the reaction of NaBH4 with methylene blue, methyl orange, and 4-nitrophenol, except Coomasie Blue. All microbial strains except C. albicans exhibited 0% of growth with the highest concentration. G. max and A. barbadensis PdNPs exhibit similar antioxidant, catalytic and antimicrobial properties than chemical PdNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams CP et al (2014) Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE 9(1):e85981

    Article  Google Scholar 

  • Ahmad N et al (2011) Biosynthesis of silver nanoparticles from desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:454090

    Article  Google Scholar 

  • Ali K et al (2016) Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci 472:145–156

    Article  CAS  Google Scholar 

  • Amarnath K et al (2012) Synthesis and characterization of chitosan and grape polyphenols stabilized palladium nanoparticles and their antibacterial activity. Colloids Surf B Biointerfaces 92:254–261

    Article  CAS  Google Scholar 

  • Amrutham S, Maragoni V, Guttena V (2020) One-step green synthesis of palladium nanoparticles using neem gum (azadirachta indica): characterization, reduction of rhodamine 6G dye and free radical scavenging activity. Appl Nanosci 10(12):4505–4511

    Article  CAS  Google Scholar 

  • Anand K et al (2016) Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. J Photochem Photobiol B 165:87–95

    Article  CAS  Google Scholar 

  • Astruc D (2007) Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: a unifying view. Inorg Chem 46(6):1884–1894

    Article  CAS  Google Scholar 

  • Athie-Garcia MS et al (2018) Cell wall damage and oxidative stress in Candida albicans ATCC10231 and Aspergillus niger caused by palladium nanoparticles. Toxicol in Vitro 48:111–120

    Article  CAS  Google Scholar 

  • Balbín A et al (2014) Dual application of Pd nanoparticles supported on mesoporous silica SBA-15 and MSU-2: supported catalysts for C-C coupling reactions and cytotoxic agents against human cancer cell lines. RSC Adv 4(97):54775–54787

    Article  Google Scholar 

  • Bankar A et al (2010) Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Mater Lett 64(18):1951–1953

    Article  CAS  Google Scholar 

  • Basavegowda N, Mishra K, Lee YR (2015) Ultrasonic-assisted green synthesis of palladium nanoparticles and their nanocatalytic application in multicomponent reaction. New J Chem 39(2):972–977

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 235:337–351

    Article  CAS  Google Scholar 

  • Bihari P et al (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14

    Article  Google Scholar 

  • Bio-Rad (2021) Coomassie Brilliant Blue R-250 Staining Solution. Bio-Rad Safety Data Sheet: 1-14. (https://bio-rad-sds.thewercs.com/DirectDocumentDownloader/Document?prd=HRLS00693~~PDF~~MTR~~AGHS~~EN)

  • Bondarenko OM et al (2018) Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. Int J Nanomedicine 13:6779–6790

    Article  CAS  Google Scholar 

  • Boran H et al (2016) Aqueous Hg2+ associates with TiO2 nanoparticles according to particle size, changes particle agglomeration, and becomes less bioavailable to zebrafish. Aquat Toxicol 174:242–246

    Article  CAS  Google Scholar 

  • Boudreau MD, Beland FA (2006) An evaluation of the biological and toxicological properties of aloe barbadensis (Miller), aloe vera. J Environ Sci Health Part C 24(1):103–154

    Article  CAS  Google Scholar 

  • Chandra C, Khan F (2017) Green synthesis of nano zerovalent iron using glycine max leaf extracts. Int J Eng Tech Sci Res 4(8):359–362

  • Chandran SP et al (2006) Synthesis of gold nanotriangles and silver nanoparticles using aloe vera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  Google Scholar 

  • Chih-ting FL, Karan K, Davis BR (2007) Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Ind Eng Chem Res 46(17):5478–5484

    Article  Google Scholar 

  • Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2 Mol Chem Phys 75:790–798

    CAS  Google Scholar 

  • Cui X et al (2017) Palladium nanoparticles supported on SiO2@Fe3O4@m-MnO2 mesoporous microspheres as a highly efficient and recyclable catalyst for hydrodechlorination of 2,4-dichlorophenol and reduction of nitroaromatic compounds and organic dyes. Molecular Catalysis 433:202–211

    Article  CAS  Google Scholar 

  • Darroudi M et al (2011) Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J Nanomedicine 6:569–574

    Article  CAS  Google Scholar 

  • Dauthal P, Mukhopadhyay M (2013) Biosynthesis of palladium nanoparticles using delonix regia leaf extract and its catalytic activity for nitro-aromatics hydrogenation. Ind Eng Chem Res 52(51):18131–18139

    Article  CAS  Google Scholar 

  • De Corte S et al (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5(1):5–17

    Article  Google Scholar 

  • Dong L et al (2021) Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. Int J Biol Macromol 172:289–298

    Article  CAS  Google Scholar 

  • Dumas A, Couvreur P (2015) Palladium: a future key player in the nanomedical field? Chem Sci 6(4):2153–2157

    Article  CAS  Google Scholar 

  • Edayadulla N, Basavegowda N, Lee YR (2015) Green synthesis and characterization of palladium nanoparticles and their catalytic performance for the efficient synthesis of biologically interesting di(indolyl)indolin-2-ones. J Ind Eng Chem 21:1365–1372

    Article  CAS  Google Scholar 

  • Elizondo N et al (2012) Green synthesis and characterizations of silver and gold nanoparticles. In: Mazaahir K (ed) Green Chemistry Environmentally Benign Approaches. InTech, London

    Google Scholar 

  • Fan L et al (2021) Green synthesis of stable platinum nanoclusters with enhanced peroxidase-like activity for sensitive detection of glucose and glutathione. Microchem J 166:106202

    Article  CAS  Google Scholar 

  • Fang G et al (2018) Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat Commun 9(1):129

    Article  Google Scholar 

  • Gálvez-Martínez E et al (2021) Catalytic evaluation of citrate-stabilized palladium nanoparticles in the Sonogashira reaction for the synthesis of 1,4-Bis[(trimethylsilyl)ethynyl]benzene. Catal Commun 153:106269

    Article  Google Scholar 

  • Garcia-Plazaola JI et al (2015) Autofluorescence: biological functions and technical applications. Plant Sci 236:136–145

    Article  CAS  Google Scholar 

  • Ghosh S et al (2015) Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities. Int J Nanomedicine 10:7477–7490

    CAS  Google Scholar 

  • Gioria E et al (2020) Green synthesis of time-stable palladium nanoparticles using microfluidic devices. J Environ Chem Eng 8(5):104096

    Article  CAS  Google Scholar 

  • Gnanasekar S et al (2018) Antibacterial and cytotoxicity effects of biogenic palladium nanoparticles synthesized using fruit extract of couroupita guianensis Aubl. J Appl Biomed 16(1):59–65

    Article  Google Scholar 

  • Gurunathan S et al (2015) Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules 20(12):22476–22498

    Article  CAS  Google Scholar 

  • Hanson R (1990) Oxidation states of carbon as aids to understanding oxidative pathways in metabolism. Biochem Educ 18(4):194–196

    Article  CAS  Google Scholar 

  • Han Z et al (2019) Green synthesis of palladium nanoparticles using lentinan for catalytic activity and biological applications. RSC Adv 9(65):38265–38270

    Article  CAS  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96(2–3):67–202

    Article  CAS  Google Scholar 

  • Hazarika M et al (2017) Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLoS ONE 12(9):e0184936

    Article  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638

    Article  CAS  Google Scholar 

  • Jadoun S et al (2020) Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett 19(1):355–374

    Article  Google Scholar 

  • Jain D et al (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Biostruct 4(3):557–563

    Google Scholar 

  • Jia L et al (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20(38):385601

    Article  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  Google Scholar 

  • Kalaiselvi A et al (2015) Synthesis and characterization of palladium nanoparticles using catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim Acta A Mol Biomol Spectrosc 135:116–119

    Article  CAS  Google Scholar 

  • Khan M et al (2014) Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction. Dalton Trans 43(24):9026–9031

    Article  CAS  Google Scholar 

  • Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) Green synthesis of Pd nanoparticles at apricot kernel shell substrate using salvia hydrangea extract: catalytic activity for reduction of organic dyes. J Colloid Interface Sci 490:1–10

    Article  CAS  Google Scholar 

  • Kiani M et al (2020) High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomedicine 30:102297

    Article  CAS  Google Scholar 

  • Klaine SJ et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  Google Scholar 

  • Kora AJ, Rastogi L (2016) Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, a glucuronoarabinogalactan biopolymer. Ind Crops Prod 81:1–10

    Article  CAS  Google Scholar 

  • Kora AJ, Rastogi L (2018) Green synthesis of palladium nanoparticles using gum ghatti (anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem 11(7):1097–1106

    Article  CAS  Google Scholar 

  • Kumar Petla R et al (2012) Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 03(01):14–19

    Article  Google Scholar 

  • Lakshmipathy R et al (2014) Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci 5(2):223–228

    Article  Google Scholar 

  • Lebaschi S, Hekmati M, Veisi H (2017) Green synthesis of palladium nanoparticles mediated by black tea leaves (camellia sinensis) extract: catalytic activity in the reduction of 4-nitrophenol and suzuki-miyaura coupling reaction under ligand-free conditions. J Colloid Interface Sci 485:223–231

    Article  CAS  Google Scholar 

  • Liu J et al (2006) Facile “green” synthesis, characterization, and catalytic function of beta-D-glucose-stabilized au nanocrystals. Chemistry 12(8):2131–2138

    Article  CAS  Google Scholar 

  • Liu HH et al (2011) Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number monte carlo simulation. Environ Sci Technol 45(21):9284–9292

    Article  CAS  Google Scholar 

  • Maensiri S et al (2008) Indium oxide (In2O3) nanoparticles using aloe vera plant extract: synthesis and optical properties. Optoelectronics Adv Mater-Rapid Commun 2:161–165

    CAS  Google Scholar 

  • Mallikarjuna K et al (2013) Palladium nanoparticles: single-step plant-mediated green chemical procedure using piper betle leaves broth and their anti-fungal studies. Int J Chem Anal Sci 4(1):14–18

    Article  CAS  Google Scholar 

  • Manikandan V et al (2016) Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract. Mater Lett 185:335–338

    Article  CAS  Google Scholar 

  • Marzun G et al (2015) Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts. Appl Surf Sci 348:75–84

    Article  CAS  Google Scholar 

  • Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg (lond) 38(6):732–749

    CAS  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Article  CAS  Google Scholar 

  • Miyazaki J et al (2015) Cytotoxicity and behavior of polystyrene latex nanoparticles to budding yeast. Colloids Surf, A 469:287–293

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  Google Scholar 

  • Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176(7):1937–1949

    Article  CAS  Google Scholar 

  • Monago-Marana O et al (2016) Fluorescence properties of flavonoid compounds. quantification in paprika samples using spectrofluorimetry coupled to second order chemometric tools. Food Chem 196:1058–1065

    Article  CAS  Google Scholar 

  • Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    Article  CAS  Google Scholar 

  • MubarakAli D et al (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerf 85(2):360–365

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10(8):859

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1–2):1–13

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M (2014) Green synthesis and catalytic properties of palladium nanoparticles for the direct reductive amination of aldehydes and hydrogenation of unsaturated ketones. New J Chem 38(11):5544–5550

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Maham M (2015) Green synthesis of palladium nanoparticles using hippophae rhamnoides linn leaf extract and their catalytic activity for the suzuki-miyaura coupling in water. J Mol Catal a: Chem 396:297–303

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M et al (2016) Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. J Colloid Interface Sci 466:360–368

    Article  CAS  Google Scholar 

  • Ndaya CC, Javahiraly N, Brioude A (2019) Recent advances in palladium nanoparticles-based hydrogen sensors for leak detection. Sensors (basel) 19(20):4478

    Article  CAS  Google Scholar 

  • Nur Y, Lead JR, Baalousha M (2015) Evaluation of charge and agglomeration behavior of TiO(2) nanoparticles in ecotoxicological media. Sci Total Environ 535:45–53

    Article  CAS  Google Scholar 

  • Olajire AA, Mohammed AA (2019) Green synthesis of palladium nanoparticles using ananas comosus leaf extract for solid-phase photocatalytic degradation of low density polyethylene film. J Environ Chem Eng 7(4):103270

    Article  Google Scholar 

  • Panfilov AV et al (2000) Reactions of sodium borohydride in acetic acid: reductive amination of carbonyl compounds. Pharm Chem J 34(7):371–373

    Article  CAS  Google Scholar 

  • Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81–87

    Article  CAS  Google Scholar 

  • Piñón-Castillo HA et al (2021) Palladium nanoparticles functionalized with PVP-quercetin inhibits cell proliferation and activates apoptosis in colorectal cancer cells. Appl Sci 11(5):1988

    Article  Google Scholar 

  • Priya GS et al (2014) Bio synthesis of cerium oxide nanoparticles using Aloe barbadensis Miller gel. Int J Sci Res Publ 4(6):199–224

    Google Scholar 

  • Radhakrishnan VS et al (2018) Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nanomedicine 13:2647–2663

    Article  CAS  Google Scholar 

  • Ripp S (2011) Nanotoxicology in the microbial world. biotechnology and nanotechnology risk assessment: minding and managing the potential threats around us. Am Chem Soc 1079:121–140

    Google Scholar 

  • Roshchina VV (2005) Allelochemicals as fluorescent markers, dyes and probes. Allelopathy J 16(1):31–46

    Google Scholar 

  • Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M (2016a) Green synthesis of seashell supported silver nanoparticles using bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J Colloid Interface Sci 470:268–275

    Article  CAS  Google Scholar 

  • Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M (2016b) Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red. J Alloy Compd 680:309–314

    Article  CAS  Google Scholar 

  • Santoshi Kumari A et al (2014) Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Appl Nanosci 5(3):315–320

    Article  Google Scholar 

  • Schneckenburger H (1992) Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators. Opt Eng 31(7):1447

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2008) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148

    Google Scholar 

  • Shanthi K et al (2015) Cytotoxic effect of palladium nanoparticles synthesized from syzygium aromaticum aqueous extracts and induction of apoptosis in cervical carcinoma. Proc Natl Acad Sci, India Sect b: Biol Sci 87(4):1101–1112

    Article  Google Scholar 

  • Sheny DS, Philip D, Mathew J (2012) Rapid green synthesis of palladium nanoparticles using the dried leaf of anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 91:35–38

    Article  CAS  Google Scholar 

  • Singh P et al (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  Google Scholar 

  • Sinha R, Khare SK (2013) Molecular basis of nanotoxicity and interaction of microbial cells with nanoparticles. Curr Biotechnol 2(1):64–72

    Article  CAS  Google Scholar 

  • Sinha R et al (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102(2):1516–1520

    Article  CAS  Google Scholar 

  • Son J, Vavra J, Forbes VE (2015) Effects of water quality parameters on agglomeration and dissolution of copper oxide nanoparticles (CuO-NPs) using a central composite circumscribed design. Sci Total Environ 521–522:183–190

    Article  Google Scholar 

  • Song H-H et al (2014) Metabolomics investigation of flavonoid synthesis in soybean leaves depending on the growth stage. Metabolomics 10(5):833–841

    Article  CAS  Google Scholar 

  • Staszek M et al (2014) Formation and antibacterial action of Pt and Pd nanoparticles sputtered into liquid. Micro Nano Lett 9(11):778–781

    Article  Google Scholar 

  • Surendra TV et al (2016) RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J Photochem Photobiol B Biol 162:550–557

    Article  CAS  Google Scholar 

  • Tamura M, Fujihara H (2003) Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. J Am Chem Soc 125(51):15742–15743

    Article  CAS  Google Scholar 

  • Tang S, Huang X, Zheng N (2011) Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser. Chem Commun (camb) 47(13):3948–3950

    Article  CAS  Google Scholar 

  • Tang J et al (2018) How microbial aggregates protect against nanoparticle toxicity. Trends Biotechnol 36(11):1171–1182

    Article  CAS  Google Scholar 

  • Veisi H et al (2015a) Green and effective route for the synthesis of monodispersed palladium nanoparticles using herbal tea extract (stachys lavandulifolia) as reductant, stabilizer and capping agent, and their application as homogeneous and reusable catalyst in suzuki coupling. Appl Organomet Chem 29(1):26–32

    Article  CAS  Google Scholar 

  • Veisi H et al (2015b) Green synthesis of palladium nanoparticles using Pistacia atlantica kurdica gum and their catalytic performance in Mizoroki-Heck and Suzuki-Miyaura coupling reactions in aqueous solutions. Appl Organomet Chem 29(8):517–523

    Article  CAS  Google Scholar 

  • Veisi H, Rashtiani A, Barjasteh V (2016) Biosynthesis of palladium nanoparticles using Rosa canina fruit extract and their use as a heterogeneous and recyclable catalyst for Suzuki-Miyaura coupling reactions in water. Appl Organomet Chem 30(4):231–235

    Article  CAS  Google Scholar 

  • Wang Y et al (2017) Loop-mediated isothermal amplification label-based gold nanoparticles lateral flow biosensor for detection of enterococcus faecalis and staphylococcus aureus. Front Microbiol 8:192

    Article  Google Scholar 

  • Xiong Y et al (2020) Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes. Chin J Chem Eng 28(5):1334–1343

    Article  CAS  Google Scholar 

  • Yang X et al (2009) Green synthesis of palladium nanoparticles using broth of cinnamomum camphora leaf. J Nanopart Res 12(5):1589–1598

    Article  Google Scholar 

  • Yilmaz E et al (2018) Synthesis and characterization of Pd nanoparticle-modified magnetic Sm2O3–ZrO2 as effective multifunctional catalyst for reduction of 2-nitrophenol and degradation of organic dyes. J Iran Chem Soc 15(8):1721–1731

    Article  CAS  Google Scholar 

  • Zhang L et al (2018) Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE 13(12):e0209020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CONACyT-Consejo Nacional de Ciencia y Tecnología fellowship No. 447906, CONACyT grant of Basic Science No. 258569 and ECOS NORD No. 263456. All authors contributed, read and approved the final manuscript, and declared have no conflict of interest. The authors thank Nanotech, Chemical Analysis, Thermic Analysis, Corrosion, and Spectroscopy and Particle Size Departments of CIMAV-Centro de Investigación en Materiales Avanzados for technical support, and M.Z. Rodríguez-Rodríguez and A.Z. Santana-Jiménez for HPIC support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Duran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 76 KB) Figure S1. Thermogravimetric analysis graphic of A. barbadensis PdNPs.

13204_2022_2601_MOESM2_ESM.png

Supplementary file2 (PNG 425 KB) Figure S2. UV-Vis a) and FT-IR spectra b) of PdNPs synthesized with G. max extract and c) and d) A. barbadensis, respectively.

13204_2022_2601_MOESM3_ESM.png

Supplementary file3 (PNG 568 KB) Figure S3. Raman spectrogram of a) PdNPs synthesized with by G. max extract at 5% and, b) A. barbadensis PdNPs, c) A. barbadensis extract pre-synthesis and d) A. barbadensis extract post-synthesis.

13204_2022_2601_MOESM4_ESM.png

Supplementary file4 (PNG 169 KB) Figure S4. Fluorescence spectra (excitation 350 nm) of a) G. max and b) A. barbadensis extracts.

13204_2022_2601_MOESM5_ESM.png

Supplementary file5 (PNG 158 KB) Figure S5. Antioxidant activity of the different PdNPs, evaluated by DPPH scavenging percentage. Mean ± Standard deviation. Different letters indicates statistically significant differences (p<0.05).

13204_2022_2601_MOESM6_ESM.docx

Supplementary file6 (DOCX 74 KB) Table S1. Comparative table of shape and size of plant mediated PdNPs synthesis. Table S2. Elemental analysis of PdNPs of A. barbadensis and G. max. Table S3. Active vibrations of FTIR spectra of PdNPs and extracts. * C.S. = Chemically synthesized PdNPs, used as a control. PdNPs = Palladium nanoparticles “green synthetized”. Pre. Ext. = Pre-synthesis extract. Post. Ext. = Post-synthesis extract. Table S4. Active vibrations of Raman spectra of G. max PdNPs and extracts. * C.S. = PdNPs chemically synthesized, used as a control. PdNPs = Palladium nanoparticles “green synthetized”. Pre. Ext. = Presynthesis extract. Post. Ext. = Postsynthesis extract. ** ND = Not determined. Table S5. Active vibrations of Raman spectra of A. barbadensis PdNPs. Table S6. Active vibrations of Raman spectra of A. barbadensis pre- and post-synthesis extracts. Table S7. Catalytic activity of plant synthesized PdNPs with dyes.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales Santos, F.J., Piñón Castillo, H.A., QuinteroRamos, A. et al. Comparison of catalytic activity and antimicrobial properties of palladium nanoparticles obtained by Aloe barbadensis and Glycine max extracts, and chemical synthesis. Appl Nanosci 12, 2901–2913 (2022). https://doi.org/10.1007/s13204-022-02601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02601-8

Keywords

Navigation