Skip to main content
Log in

Activated carbon doped WO3 for photocatalytic degradation of rhodamine-B

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In this research work, tungsten trioxide (WO3) and activated doped WO3 composites were prepared for the photocatalytic degradation of rhodamine-B. Activated carbon was prepared by waste sugarcane burgesses, tungsten trioxide (WO3) was synthesized by precursor sodium tungstate dihydrate (Na2WO4·2H2O) using hydrothermal method. To study the morphology, functional groups, band gap, purity and optical properties of the prepared catalyst SEM, FTIR, PL and UV–Vis spectroscopy were used. SEM micrograph shows that tungsten trioxide has nanocubic rods-like structure with size 50–500 nm. Morphological results showed that nano rods become sharper when activated carbon were added in WO3. The average nanorods have average size 20–250 nm which is very efficient for degradation. UV–Vis spectroscopy shows that band gap of the fabricated catalyst changes from 2.76 to 2.26 eV by varying the concentration ratio of the activated carbon. FTIR analysis the functional groups of the prepared catalyst. PL-spectroscopy determined that the maximum excitation wavelength was 446 nm. Photocatalytic results show that 2% activated carbon doped WO3 composite shows the maximum degradation rate as compare to the other prepared catalyst. Synthesized catalysts are environment friendly, cost effective and due to low band gap very useful for the degradation purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abazari R et al (2014) Characterization and optical properties of spherical WO3 nanoparticles synthesized via the reverse microemulsion process and their photocatalytic behavior. Mater Lett 133:208–211

    Article  CAS  Google Scholar 

  • Adhikari S, Sarkar D, Maiti HS (2014) Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater Res Bull 49:325–330

    Article  CAS  Google Scholar 

  • Alaei M, Mahjoub AR, Rashidi A (2012) Effect of WO3 nanoparticles on congo red and rhodamine B photo degradation. Iran J Chem Chem Eng (IJCCE) 31(1):23–29

    CAS  Google Scholar 

  • Amin NK (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223(1–3):152–161

    Article  CAS  Google Scholar 

  • Andreozzi R et al (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53(1):51–59

    Article  CAS  Google Scholar 

  • Anfar Z et al (2018) Well-designed WO3/activated carbon composite for rhodamine B removal: synthesis, characterization, and modeling using response surface methodology. Fuller Nanotubes Carbon Nanostruct 26(6):389–397

    Article  CAS  Google Scholar 

  • Cai L et al (2015) Highly effective and stable Ag3PO4–WO3/MWCNTs photocatalysts for simultaneous Cr(VI) reduction and orange II degradation under visible light irradiation. Appl Surf Sci 353:939–948

    Article  CAS  Google Scholar 

  • Cao J et al (2011) Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation. J Hazard Mater 190(1–3):700–706

    Article  CAS  Google Scholar 

  • Chaudhary A et al (2017) TiO2, WO3, and V2O5, supported on activated carbon: preparation, structural and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Fresenius Environ Bull 26(5):3529–3541

    Google Scholar 

  • Ding J et al (2017) Synergistic effects of electronic structure of WO3 nanorods with the dominant 001 exposed facets combined with silver size-dependent on the visible-light photocatalytic activity. Appl Catal B 203:335–342

    Article  CAS  Google Scholar 

  • El-Salamony RA et al (2018) Visible light sensitive activated carbon-metal oxide (TiO2, WO3, NiO, and SnO) nano-catalysts for photo-degradation of methylene blue: a comparative study. Toxicol Environ Chem 100(2):143–156

    Article  CAS  Google Scholar 

  • Esplugas S et al (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36(4):1034–1042

    Article  CAS  Google Scholar 

  • Gan L et al (2016) Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram Int 42(14):15235–15241

    Article  CAS  Google Scholar 

  • He Z et al (2009) Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway. J Hazard Mater 162(2–3):1477–1486

    Article  CAS  Google Scholar 

  • Helfrich A, Brüchert W, Bettmer J (2006) Size characterisation of Au nanoparticles by ICP–MS coupling techniques. J Anal Atom Spectrom 21(4):431–434

    Article  CAS  Google Scholar 

  • Hepel M, Hazelton S (2005) Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes. Electrochim Acta 50(25–26):5278–5291

    Article  CAS  Google Scholar 

  • Hole P et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15(12):2101

    Article  Google Scholar 

  • Hunge Y et al (2018) Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination. Opt Mater 76:260–270

    Article  CAS  Google Scholar 

  • Ito S et al (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516(14):4613–4619

    Article  CAS  Google Scholar 

  • Kim J, Lee CW, Choi W (2010) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44(17):6849–6854

    Article  CAS  Google Scholar 

  • Kim JK et al (2012) Inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses. Chem Commun 48(98):11939–11941

    Article  CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35(2):402–417

    Article  CAS  Google Scholar 

  • Krishnan KA, Anirudhan T (2002) Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith. Ind Eng Chem Res 41(20):5085–5093

    Article  CAS  Google Scholar 

  • Luo J, Hepel M (2001) Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode. Electrochim Acta 46(19):2913–2922

    Article  CAS  Google Scholar 

  • Lv K et al (2011) Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. J Hazard Mater 189(1–2):329–335

    Article  CAS  Google Scholar 

  • Matthews RW (1990) Purification of water with near—UV illuminated suspensions of titanium dioxide. Water Res 24(5):653–660

    Article  CAS  Google Scholar 

  • Montes-Burgos I et al (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12(1):47–53

    Article  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    Article  CAS  Google Scholar 

  • Paramasivam I et al (2010) WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chem A Eur J 16(30):8993–8997

    Article  CAS  Google Scholar 

  • Pera-Titus M et al (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B 47(4):219–256

    Article  CAS  Google Scholar 

  • Pihosh Y et al (2014) Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10(18):3692–3699

    Article  CAS  Google Scholar 

  • Ren H-T et al (2014) Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light. Ind Eng Chem Res 53(45):17645–17653

    Article  CAS  Google Scholar 

  • Sudrajat H, Babel S (2016) An innovative solar photoactive system N-WO3@ polyester fabric for degradation of amaranth in a thin-film fixed-bed reactor. Sol Energy Mater Sol Cells 149:294–303

    Article  CAS  Google Scholar 

  • Tahir MB, Nabi G, Hassan A, Iqbal T, Kiran H, Majid A (2018) Morphology tailored synthesis of C-WO3 nanostructures and its photocatalytic application. J Inorg Organomet Polym Mater 28(3):738–745

    Article  CAS  Google Scholar 

  • Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ Sci Technol 30(5):1660–1666

    Article  CAS  Google Scholar 

  • Willard M et al (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49(3–4):125–170

    Article  CAS  Google Scholar 

  • Yin M et al (2009) Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system. Environ Sci Technol 43(21):8361–8366

    Article  CAS  Google Scholar 

  • Yu K et al (2009) Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J Phys Chem A 113(37):10024–10032

    Article  CAS  Google Scholar 

  • Zhang J et al (2013) Ultra-thin WO3 nanorod embedded polyaniline composite thin film: synthesis and electrochromic characteristics. Sol Energy Mater Sol Cells 114:31–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal Tahir or Mohsin Ijaz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, M.B., Ashraf, M., Rafique, M. et al. Activated carbon doped WO3 for photocatalytic degradation of rhodamine-B. Appl Nanosci 10, 869–877 (2020). https://doi.org/10.1007/s13204-019-01141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01141-y

Keywords

Navigation