Skip to main content

Advertisement

Log in

Synergistic Effect Between WO3/Activated Carbon and BiVO4 Nanoparticles for Improved Photocatalytic Hydrogen Evolution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Modified composite of the pure monoclinic tungstun oxide with 2.0% of activated carbon photocatalyst with BiVO4 as coupling content is synthezed via facile hydrothermal route. The composite is fabricated with coupling ratio of 0.5%,1.0%,1.5% and 2.0% dopant BiVO4. These composite were characterized by the XRD, SEM, UV–Vis, PL and BET to investigate the various properties (particle size, structural, morphological, purity and optical) and the energy band of the photocatalytic material. It is commonly examined that the C-WO3 showed the extraneous results for the evolution of the hydrogen energy by increasing the coupling contents upto 1.5% of BiVO4 and gave extraordinary photocatalytic activity towards the hydrogen energy production. The formation of the orthorhombic phases from the monoclinic and hexagonal at 2.0% of doping content indicated the increase of size of the particles and energy band gap. The average grain size of the composite is ranging from 30 to 50 nm. The increment of the BiVO4 content in the C-WO3 composite causes the reduction of photocatalytic activity because of the increase in the grain size and the forbidden gap of the photocatalytic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Segurado et al., Integrated analysis of energy and water supply in islands case study of S. Vicente. Cape Verde. Energy 92, 639–648 (2015)

    Article  Google Scholar 

  2. C. Acar, I. Dincer, G.F. Naterer, Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 2016, 1–25 (2016)

    Google Scholar 

  3. M.B. Tahir, M. Sagir, Khurram shahzad, Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3–TiO2 @g-C3N4 composite. J. Hazard. Mater. 363, 205–213 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. C. Dincer, Acar, A review on clean energy sources for better sustainability. Int. J. Energy Res. 39, 585–606 (2015)

    Article  Google Scholar 

  5. H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015)

    Article  CAS  Google Scholar 

  6. S.E. Hosseini, M. AbdulWahid, Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016)

    Article  CAS  Google Scholar 

  7. S.J. Darzi, A.R. Mahjoub, Investigation of phase transformations and photocatalytic properties of sol–gel prepared nanostructured ZnO/TiO2 composites. J. Alloy. Compd. 486, 805–808 (2009)

    Article  CAS  Google Scholar 

  8. L. Elsellami, F. Dappozze, A. Houas, C. Guillard, Effect of Ag + reduction on the photocatalytic activity of Ag-doped TiO2. Superlattices Microstruct. 109, 511–518 (2017)

    Article  CAS  Google Scholar 

  9. L. Shang, B. Tong, H. Yu, I.N. Waterhouse, C. Zhou, Y. Zhao, M. Tahir, L.Z. Wu, C.H. Tung, T. Zhang, CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater 6, 1501241–1501247 (2016)

    Article  CAS  Google Scholar 

  10. J. Gu, Y. Yan, J.L. Young, K.X. Steirer, N.R. Neale, J.A. Turner, Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nat. Mater. 6, 456 (2015)

    Google Scholar 

  11. T.M. Ismail, A.K. Azab, M.A. Elkady, M.M. Abo, Elnasr, Theoretical investigation of the performance of integrated seawater desalination plant utilizing renewable energy. Energy Convers. Manag. 126, 811–825 (2016)

    Article  Google Scholar 

  12. X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, Z.L. Wang, Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 47, 5804–5806 (2011)

    Article  CAS  Google Scholar 

  13. Q. Xue, Y. Liu, Q. Zhou, M. Utsumi, Z. Zhang, N. Sugiura, Photocatalytic degradation of geosmin by Pd nanoparticle modified WO3 catalyst under simulated solar light. Chem. Eng. J. 283, 614–621 (2016)

    Article  CAS  Google Scholar 

  14. I. Szekely, G. Kovács, L. Baia, V. Danciu, Z. Pap, Synthesis of shape-tailored WO3 micro-/nanocrystals and the photocatalytic activity of WO3/TiO2 composites. Materials 9, 258 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  15. L. Gan, L. Xu, S. Shang, X. Zhou, L. Meng, Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram. Int. 42(14), 15235–15241 (2016)

    Article  CAS  Google Scholar 

  16. M.B. Tahir, G. Nabi, A. Hassan, T. Iqbal, H. Kiran, A. Majid, Morphology tailored synthesis of C-WO3 nanostructures and its photocatalatic application. J. Inorg. Organomet. Polym Mater. 28(3), 738–745 (2018)

    Article  CAS  Google Scholar 

  17. S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781–1787 (2011)

    Article  CAS  Google Scholar 

  18. P. Chatchai, Y. Murakami, S. Kishioka, A.Y. Nosaka, Y. Nosaka, Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation. Electrochim. Acta 54, 1147–1152 (2009)

    Article  CAS  Google Scholar 

  19. T. Kim, K. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. P. Rao, simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099–1105 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. P. Chatchai, S. Kishioka, Y. Murakami, A. Nosaka, Y. Nosaka, Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation. Electrochim. Acta 55, 592–596 (2010)

    Article  CAS  Google Scholar 

  23. X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, S. Ho Oh, J.K. Kim, J.H. Park, Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5775, 1–8 (2014)

    Google Scholar 

  24. P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weiss, P. Yang, X. Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099–1105 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. K. Fuku, K. Sayama, Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. R. Soc. Chem. 2(3), 5–9 (2016)

    Google Scholar 

  26. M.B. Tahir et al., Role of MoSe2 on nanostructures WO3-CNT performance for photocatalytic hydrogen evolution. Ceram. Int. 44(6), 6686–6690 (2018)

    Article  CAS  Google Scholar 

  27. M.B. Tahir, M. Sagir, M. Zubair, M. Rafique, I. Abbas, M. Shakil, I. Khan, S. Afsheen, A. Hasan, A. Ahmed, WO3 nanostructures-based photocatalyst approach towards degradation of RhB dye. J. Inorg. Organomet. Polym Mater. 28, 1107–1113 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. B. Tahir or A. Hassan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, H., Tahir, M.B., Iqbal, T. et al. Synergistic Effect Between WO3/Activated Carbon and BiVO4 Nanoparticles for Improved Photocatalytic Hydrogen Evolution. J Inorg Organomet Polym 29, 869–875 (2019). https://doi.org/10.1007/s10904-018-01061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-01061-4

Keywords

Navigation