Skip to main content

Advertisement

Log in

Surface modification of oxygen-deficient ZnO nanotubes by interstitially incorporated carbon: a superior photocatalytic platform for sustainable water and surface treatments

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

An interesting architecture of robust, highly reproducible, template-free synthesis of phase pure carbon-incorporated short ZnO nanotubes through polymer assisted sol–gel method is presented here. These nanotubes exhibit enormous surface oxygen vacancies and mid bandgap levels confirmed by X-ray photoelectron spectroscopy. These carbon-modified nanotubes exhibit encouraging results in photocatalytic studies, as there is a 16% greater degradation of contaminant dye than in the pristine ZnO nanotube. The reactive oxygen species generated from the photocatalysts were experimentally confirmed and quantified. Super hydrophilic nature renders these nanotubes suitable for antifogging application as observed from contact angle measurements. Characterisation and mechanism of a competent material with improved photoresponse, promising greater energy efficiency and anti-fog have been described in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ansari SA, Cho MH (2016) Sci rep 6(1–10):25405

    Article  Google Scholar 

  • Ansari SA, Ansari SG, Foaud H, Cho MH (2017) NewJChem 41:9314–9320

    Google Scholar 

  • Atchudan R, Edison TNJI, Sugun S, Perumal N, Karthik D, Karthikeyan M, Shanmugam YR, Lee J (2018) Photochem Photobiol A 350:75–85

    Article  Google Scholar 

  • Aziz SNQAA, Pung S-Y, Ramli NN, Lockman Z (2014) Sci World J 252851:1–9

    Article  Google Scholar 

  • Bozetine H, Wang Q, Barras A, Li M, Hadjersi T, Szunerits S, Boukherroub R (2016) J Colloid Interface Sci 465:286–294

    Article  Google Scholar 

  • Chall S, Saha A, Biswas SK, Datta A, Bhattacharya SC (2012) J Mater Chem 22:12538–12546

    Article  Google Scholar 

  • Chen X, Liu L, Yu PY, Mao SS (2011) Science 331:746–750

    Article  Google Scholar 

  • Chevallier P, Turgeon S, S-Bournet C, Turcotte R, Laroche G (2011) ACS Appl Mater Interfaces 3:750–758

    Article  Google Scholar 

  • Danks AE, Hall SR, Schnepp Z (2016) Mater Horiz 3:91–112

    Article  Google Scholar 

  • Dave K, Park KH, Dhayal M (2015) RSC Adv 5:107348–107354

    Article  Google Scholar 

  • Du Y, Huang Z, Wu S, Xiong K, Zhang X, Zheng B, Nadimicherla R, Fu R, Wu D (2018) Polym 137:195–200

    Article  Google Scholar 

  • England MW, Urata C, Dunderdale GJ, Hozumi A (2016) ACS Appl Mater Interfaces 8:4318–4322

    Article  Google Scholar 

  • Gao Y, Gereige I, Labban AE, Cha D, Isimjan TT, Beaujuge PM (2014) ACS Appl Mater Interfaces 6:2219–2223

    Article  Google Scholar 

  • Gong Z, Karandikar S, Zhang X, Kotipalli V, Lvov Y, Que L, IEEE Sensors (2010) 29–32

  • Guidelli EJ, Baffa O, Clarke DR (2015) Sci Rep 5:14004. (1–11).

    Article  Google Scholar 

  • Gunasekaran S, Sailatha E, Seshadri S, Kumaresan S (2009) Indian J Pure Appl Phys 47:12–18

    Google Scholar 

  • Hariharana R, Senthilkumara S, Suganthib A, Rajarajan M (2013) J Photochem Photobiol A 252:107–115

    Article  Google Scholar 

  • He D, Li Y, Wang I, Wu J, Yang Y, An Q (2017) Appl Surf Sci 391:318–325

    Article  Google Scholar 

  • Huang H, Li F, Wang H, Zheng X (2017) RSC Adv 7:50056–50063

    Article  Google Scholar 

  • Iaiche S, Djelloul A (2015) J Spectrosc 836859:1–9

    Article  Google Scholar 

  • Jothi Prakash CG, Clement Raj C, Prasanth R (2017) J Colloid Interface Sci 496:300–310

    Article  Google Scholar 

  • Kashyap J, Ashraf SM, Riaz U (2017) ACS Omega 2:8354–8365

    Article  Google Scholar 

  • Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Science 355:1296–1299

    Article  Google Scholar 

  • Kumar R, Anandan S, Hembram K, Rao TN (2014) ACS Appl Mater Interfaces 6:13138

    Article  Google Scholar 

  • Kumar B, Kaur G, Rai SB (2017) Spectrochim acta part a: mol biol spectrosc 187:75–81

    Article  Google Scholar 

  • Lavand AB, Malghe YS, Int J Photochem 2015a (2014) (1–9)

  • Lavand AB, Malghe YS (2015b) J Saudi Chem Soc 19:471–478

    Article  Google Scholar 

  • Lin X, Liang Y, Lu Z, Lou H, Zhang X, Liu S, Zheng B, Liu R, Fu R, Wu D (2017) ACS Sustainable Chem Eng 5:8535–8540

    Article  Google Scholar 

  • Liu X, Du H, Sun XW (2014) RSC Adv 4:5136–5140

    Article  Google Scholar 

  • Madhu R, Veeramani V, Chen S-M, Veerakumar P, Liu S-B, Miyamoto N (2016) Phys Chem Chem Phys 18:16466–16475

    Article  Google Scholar 

  • Mai W, Zuo Y, Li C, Wu J, Leng K, Zhang X, Liu R, Fu R, Wu D (2017) Polym Chem 8:4771

    Article  Google Scholar 

  • Meethal BN, pullanjiyot N, Swaminathan S (2017) Mater Des 130:426–432

    Article  Google Scholar 

  • Mello MLS, Vidal BC (2012) PLOS One 7(8):43169 (1–12)

    Article  Google Scholar 

  • Óvári L, Calderon SK, Lykhach Y, Libuda J, Erdohelyi A, Papp C, Kiss J, Steinrück H-P (2013) J Catal 307:132–139

    Article  Google Scholar 

  • Patrinoiu G, Calderon-Moreno JM, Birjega R, Culita DC, Somacescu S, Musuc AM, Spataru T, Carp O (2016) Phys Chem Chem Phys 18:30794–30807

    Article  Google Scholar 

  • Pouran HM, Llabjani V, Martin FL, Zhang H (2013) Environ Sci Technol 47:11115–11121

    Article  Google Scholar 

  • Roy BN, Singh GP, Godbole HM, Nehate SP (2009) Indian J Pharm Sci 71(4):395–405

    Article  Google Scholar 

  • Samadipakchin P, Mortaheb HR, Zolfaghari A (2017) J Photochem Photobiol A 337:91–99

    Article  Google Scholar 

  • Santara B, Giri PK, Imakita K, Fujii M (2014) J Phys D: Appl Phys 47:215302 (1–13)

    Article  Google Scholar 

  • Sharma V, Kumar P, Kumar A, Surbhi K, Asokan K, Sachdev (2017) Sol Energy Mater Sol Cells 169:122–131

    Article  Google Scholar 

  • Shen Z, Liang P, Wang S, Liu L, Liu S (2015) ACS Sustainable Chem Eng 3:1010—1016

    Google Scholar 

  • Sun H, He J, Wang J, Zhang S-Y, Liu C, Sritharan T, Mhaisalkar S, Han M-Y, Wang D, Chen H (2013) J Am Chem Soc 135:9099–9110

    Article  Google Scholar 

  • Titov VV, Lisachenko AA, Akopyan IK, Labzowskaya ME, Novikov BV (2018) J Lumin 195:153–158

    Article  Google Scholar 

  • Vetter M, Brodyanski A, Jodl H-J (2007) Fizika Nizkikh Tempe 33:1383–1392

    Google Scholar 

  • Wu L, Yang X, Li J, Huang Y, Li X (2017) Mater Chem Phys 202:136–142

    Article  Google Scholar 

  • Yan X, Gu Y, Zhang X, Huang Y, Qi J, Zhang Y, Fujita T, Chen M (2009) J Phys Chem C 113(4):1164–1167

    Article  Google Scholar 

  • Yang H, Ye Q, Zeng R, Zhang J, Yue L, Xu M (2017) Sensors 17:2415 (1–11)

    Article  Google Scholar 

  • Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Sci rep 4:4596 (1–8)

    Article  Google Scholar 

  • Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R (2015) J Phys Chem C 119:20544–20554

    Article  Google Scholar 

  • Zhang Q, Wang H, Li Z, Geng C, Leng J (2017) ACS Appl Mater Interfaces 9:21738–21746

    Article  Google Scholar 

Download references

Acknowledgements

The authors Bhabhina and Rajita acknowledge Council of Scientific and Industrial Research (CSIR) and University Grant Commission (UGC) for the financial assistance in the form of research and teacher fellowships. Author Sindhu acknowledges Council for Scientific and Industrial research (CSIR), Government of India for the financial support received in the form of research grant (no. 03(1285)/13/EMR-II). Authors are grateful to Dr. Sujith A and Suja P Sundaran of National Institute of Technology, Calicut, India, for their help in contact angle measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindhu Swaminathan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninnora Meethal, B., Ramanarayanan, R. & Swaminathan, S. Surface modification of oxygen-deficient ZnO nanotubes by interstitially incorporated carbon: a superior photocatalytic platform for sustainable water and surface treatments. Appl Nanosci 8, 1545–1555 (2018). https://doi.org/10.1007/s13204-018-0809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0809-6

Keywords

Navigation