, Volume 74, Issue 1, pp 43–54 | Cite as

Communities of arbuscular mycorrhizal fungi under Picconia azorica in native forests of Azores

  • Catarina Drumonde Melo
  • Sara Luna
  • Claudia Krüger
  • Christopher Walker
  • Duarte Mendonça
  • Henrique M. A. C. Fonseca
  • Maria Jaizme-Vega
  • Artur Câmara Machado


Arbuscular mycorrhizal fungi (AMF) from the rhizosphere of the endemic Laurisilva tree, Picconia azorica, were characterised at two sites in each of two Azorean islands (Terceira and São Miguel). Forty-six spore morphotypes were found, and DNA extraction was attempted from individual spores of each of these. DNA was obtained from 18 of the morphotypes, from which a 1.5 kb long fragment of the nuclear ribosomal RNA gene (SSU-ITS-LSU) was sequenced. A total of 125 AMF sequences were obtained and assigned to 18 phylotypes. Phylogenetic analysis revealed sequences belonging to the families, Acaulosporaceae, Archaeosporaceae, Claroideoglomeraceae, Gigasporaceae and Glomeraceae. Phylotype richness changed between islands and between sampling sites at both islands suggesting that geographical and historical factors are determinant in shaping AMF communities in native forest of Azores. Ecological analysis of the molecular data revealed differences in AMF community composition between islands. In Terceira, the rhizosphere of P. azorica was dominated by species belonging to Acaulosporaceae and Glomeraceae, while São Miguel was dominated by members of Glomeraceae and Gigasporaceae. This is the first molecular study of AMF associated with P. azorica in native forest of the Azores. These symbiont fungi are key components of the ecosystem. Further research is needed to develop their use as promoters of plant establishment in conservation and restoration of such sites.


Phylogeny Picconia azorica Endemic forest of Azores AMF community composition 



Special thanks to Luís Vasco Nunes of Regional Institute of Agrarian Planning for providing the aerial photographs. Many thanks to Paulo Borges of cE3c- Azorean Biodiversity Group for providing the software packages Species Diversity and Richness IV for the paper, and also for the work reviewed here, and also Reinaldo Pimentel of Azorean Biodiversity Group (CITA-A) for providing the imaging software. We gratefully acknowledge financial support for this research from the Portuguese Fundação para a Ciência e a Tecnologia (PTDC/AGR-ALI/122152/2010, SFRH/BPD/78059/2011 and UID/GEO/04035/2013) and Fundo Regional para a Ciência e Tecnologia – Governo dos Açores (M317/F/010A/2009 and M312/F/041/2011). C. Krüger was supported by the long-term research development project RVO 67985939.

Supplementary material

13199_2017_487_MOESM1_ESM.pdf (164 kb)
Figure S1 Maximum likelihood consensus and Evolutionary Placement Algorithm (EPA) phylogenetic trees calculated by RaxML. Grouped into A) backbone phylogenetic tree and B) EPA trees achieved by applying different sequence similarity threshold 97, 98 and 99% (from left to right) using UPARSE. AMF sequences found in Picconia azorica roots marked in blue. Scale bar shows number of substitution per site. (PDF 164 kb)
13199_2017_487_Fig6_ESM.gif (43 kb)
Figure S2

Full maximum likelihood phylogenetic tree, spanning a part of the SSU, the full ITS1-5.8S-ITS2 region and a large part of the LSU rRNA gene regions (ca. 1.5 kb long), including the AMF sequences found in Picconia azorica roots marked in blue. Scale bar shows number of substitution per site. (GIF 43 kb)

13199_2017_487_MOESM2_ESM.eps (6.1 mb)
High Resolution (EPS 6267 kb)
13199_2017_487_MOESM3_ESM.xls (39 kb)
Table S1 List of all detected OTUs calculated with SEED. Corresponding sequences are linked to the different OTUs achieved by the sequence similarity thresholds 97, 98 and 99%, in separated tabs. (XLS 39 kb)


  1. AL-Ghamdi AA, Jais HM (2012) Interaction between soil textural components, flavonoids in the roots and mycorrhizal colonization in ‘Juniperus procera in Saudi Arabia. Afr J Microbiol Res 7:996–1001Google Scholar
  2. Alguacil MM, Lumini E, Roldan A et al (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536CrossRefPubMedGoogle Scholar
  3. Bainard LD, Bainard JD, Hamel C, Gan Y (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 88:333–344. doi: 10.1111/1574-6941.12300 CrossRefPubMedGoogle Scholar
  4. Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 60:291–302. doi: 10.1093/sysbio/syr010 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borges PAV, Brown VK (1999) Effect of island geological age on the arthropod species richness of Azorean pastures. Biol J Linn Soc 66:373–410CrossRefGoogle Scholar
  6. Borges PAV, Hortal J (2009) Time, area and isolation: factors driving the diversification of Azorean arthropods. J Biogeogr 36:178–191CrossRefGoogle Scholar
  7. Borges PAV, Ugland KI, Dinis FO, Gaspar C (2008) Insect and spider rarity in an oceanic island (Terceira, Azores): true rare and pseudo-rare species. In: Fattorini S (ed) Insect ecology and conservation. Research Signpost, Kerala (India) pp 47–70Google Scholar
  8. Boyer LR, Brain P, Xu X-M, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25:215–227. doi: 10.1007/s00572-014-0603-6 CrossRefPubMedGoogle Scholar
  9. Brundrett MC, Ashwath N (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil 370:419–433. doi: 10.1007/s11104-013-1613-4 CrossRefGoogle Scholar
  10. Caporaso JG, Bittinger K, Bushman FD et al (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi: 10.1093/bioinformatics/btp636 CrossRefPubMedGoogle Scholar
  11. Caporaso JG, Kuczynski J, Stombaugh J et al (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cardoso P, Gaspar C, Pereira LC et al (2008) Assessing spider species richness and composition in Mediterranean cork oak forests. Acta Oecol 33:114–127. doi: 10.1016/j.actao.2007.10.003 CrossRefGoogle Scholar
  13. Clapp JP, Rodriguez AR, Dodd JC (2002) Glomales rRNA gene diversity – all that glistens is not necessarily glomalean? Mycorrhiza 12:260–270Google Scholar
  14. de la Providencia IE, Stefani FOP, Labridy M, et al (2015) Arbuscular mycorrhizal fungal diversity associated with Eleocharis obtusa and Panicum capillare growing in an extreme petroleum hydrocarbon-polluted sedimentation basin. FEMS Microbiol Lett 362:fnv081. doi:  10.1093/femsle/fnv081
  15. de Oliveira AN, de Oliveira LA (2010) Influence of edapho-climatic factors on the sporulation and colonization of arbuscular mycorrhizal fungi in two Amazonian native fruit species. Braz Arch Biol Technol 53:653–661. doi: 10.1590/S1516-89132010000300021
  16. Dias E (1996) Ecologia e sintaxonomia das florestas naturais. Ph.D. Dissertation, University of the AzoresGoogle Scholar
  17. dos Santos R, Girardi CG, Pescador R, Stürmer SL (2010) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on post vitro growth of micropropagated Zingiber officinale Roscoe. Rev Bras Ciênc Solo 34:765–771. doi: 10.1590/S0100-06832010000300018
  18. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi: 10.1038/nmeth.2604 CrossRefPubMedGoogle Scholar
  19. Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544CrossRefGoogle Scholar
  20. Ferrol N, Calvente R, Cano C et al (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl Soil Ecol 25:123–133. doi: 10.1016/j.apsoil.2003.08.006 CrossRefGoogle Scholar
  21. Gaspar C, Borges PA, Gaston KJ (2008) Diversity and distribution of arthropods in native forests of the Azores archipelago. Arquip Life Mar Sci 25:01–30Google Scholar
  22. Gilmore AE (1968) Phycomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia 39:87–105CrossRefGoogle Scholar
  23. González-Cortés JC, Vega-Fraga M, Varela-Fregoso L et al (2012) Arbuscular mycorrhizal fungal (AMF) communities and land use change: the conversion of temperate forests to avocado plantations and maize fields in central Mexico. Fungal Ecol 5:16–23. doi: 10.1016/j.funeco.2011.09.002 CrossRefGoogle Scholar
  24. Gruenstaeudl M, Santos-guerra A, Hawkes CV, Jansen RK (2013) Molecular survey of arbuscular mycorrhizal fungi associated with Tolpis on three Canarian islands (Asteraceae). Vieraea 41:199–218Google Scholar
  25. Hart MM, Reader RJ (2002) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils 36:357–366. doi: 10.1007/s00374-002-0539-4 CrossRefGoogle Scholar
  26. Helgason T, Merryweather JW, Denison J et al (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384CrossRefGoogle Scholar
  27. Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630. doi: 10.1111/j.1365-2745.2007.01239.x CrossRefGoogle Scholar
  28. Henderson PA, Seaby RMH (2002) Species diversity and richness, version 3.0. Pisces Conservation Ltd., ( Accessed 27 Aug 2016
  29. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. doi: 10.1016/j.phytochem.2006.09.023 CrossRefPubMedGoogle Scholar
  30. Husband R, Herre EA, Turner SL et al (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678CrossRefPubMedGoogle Scholar
  31. Ismail Y, Hijri M (2012) Arbuscular mycorrhisation with Glomus irregulare induces expression of potato PR homologues genes in response to infection by Fusarium sambucinum. Funct Plant Biol 39:236. doi: 10.1071/FP11218 CrossRefGoogle Scholar
  32. Jansa J, Mozafar A, Anken T et al (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234. doi: 10.1007/s00572-002-0163-z CrossRefPubMedGoogle Scholar
  33. Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223. doi: 10.1111/j.1469-8137.2009.02835.x
  34. Krüger M, Krüger C, Walker C et al (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. doi: 10.1111/j.1469-8137.2011.03962.x CrossRefPubMedGoogle Scholar
  35. Krüger M, Teste FP, Laliberté E et al (2015) The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Mol Ecol 24:4912–4930. doi: 10.1111/mec.13363 CrossRefPubMedGoogle Scholar
  36. Leake J, Johnson D, Donnelly D et al (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045. doi: 10.1139/b04-060 CrossRefGoogle Scholar
  37. Lekberg Y, Koide RT, Rohr JR et al (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105. doi: 10.1111/j.1365-2745.2006.01193.x CrossRefGoogle Scholar
  38. Lumini E, Orgiazzi A, Borriello R et al (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. doi: 10.1111/j.1462-2920.2009.02099.x PubMedGoogle Scholar
  39. Magurran AE (2004) Measuring biological diversity. Blackwell Science, OxfordGoogle Scholar
  40. Martins AM (1993) The Azores-westernmost Europe: where evolution can be caught red-handed. Mus Mun Funchal 2:181–198Google Scholar
  41. Martins J, Moreira O, Silva L, Moura M (2011) Vegetative propagation of the endangered Azorean tree, Picconia azorica. Arquip Life Mar Sci28:39–46Google Scholar
  42. Melo CD, Walker C, Rodríguez-Echeverría S et al (2014) Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores). Symbiosis 64:73–85. doi: 10.1007/s13199-014-0303-1 CrossRefGoogle Scholar
  43. Melo CD, Luna S, Krüger C et al (2017) Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest. Acta Oecol. doi: 10.1016/j.actao.2016.12.006 Google Scholar
  44. Mendonça D, Luna S, Bettencourt S et al (2015) In vitro propagation of Picconia azorica (Tutin) Knobl. (Oleaceae) an Azorean endangered endemic plant species. Acta Physiol Plant 37:47. doi: 10.1007/s11738-015-1797-8
  45. Middleton EL, Richardson S, Koziol L, et al (2015) Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere 6:art276. doi:  10.1890/ES15-00152.1
  46. Minitab I (2000) Minitab: release 13 for Windows. Minitab Inc., State CollegeGoogle Scholar
  47. Moora M, Davison J, Öpik M et al (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621. doi: 10.1111/1574-6941.12420 CrossRefPubMedGoogle Scholar
  48. Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90. doi: 10.1007/s11104-006-9091-6 CrossRefGoogle Scholar
  49. Nam Y-J, Kim H, Lee J-H et al (2015) Metagenomic analysis of soil fungal communities on Ulleungdo and Dokdo Islands. J Gen Appl Microbiol 61:67–74. doi: 10.2323/jgam.61.67 CrossRefPubMedGoogle Scholar
  50. Oehl F, Laczko E, Bogenrieder A et al (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738. doi: 10.1016/j.soilbio.2010.01.006 CrossRefGoogle Scholar
  51. Öpik M, Metsis M, Daniell TJ et al (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437. doi: 10.1111/j.1469-8137.2009.02920.x CrossRefPubMedGoogle Scholar
  52. Redecker D, Schüßler A, Stockinger H et al (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531. doi: 10.1007/s00572-013-0486-y CrossRefPubMedGoogle Scholar
  53. Rodríguez-Echeverría S, Freitas H (2006) Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes. Mycorrhiza 16:543–552. doi: 10.1007/s00572-006-0070-9 CrossRefPubMedGoogle Scholar
  54. Schlaeppi K, Bender SF, Mascher F et al (2016) High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol 212:780–791. doi: 10.1111/nph.14070 CrossRefPubMedGoogle Scholar
  55. Schneider KD, Lynch DH, Dunfield K et al (2015) Farm system management affects community structure of arbuscular mycorrhizal fungi. Appl Soil Ecol 96:192–200. doi: 10.1016/j.apsoil.2015.07.015 CrossRefGoogle Scholar
  56. Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220. doi: 10.1007/s00572-010-0325-3 CrossRefPubMedGoogle Scholar
  57. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101:599–611. doi: 10.3852/08-169
  59. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  60. Shah MA, Beaulieu M-E, Reshi ZA et al (2015) A cross-city molecular biogeographic investigation of arbuscular mycorrhizas in Conyza canadensis rhizosphere across native and non-native regions. Ecol Process. doi: 10.1186/s13717-015-0034-0 Google Scholar
  61. Shukla A, Kumar A, Jha A et al (2013) Soil moisture levels affect mycorrhization during early stages of development of agroforestry plants. Biol Fertil Soils 49:545–554. doi: 10.1007/s00374-012-0744-8 CrossRefGoogle Scholar
  62. Silva L, Martins M, Maciel G, Moura M (2009) Flora Vascular dos Açores - Prioridades em Conservação. Azorean Vascular Flora - Priorities in Conservation. Bilingue. Associação Ecológica Amigos dos Açores & CCPA, Ponta DelgadaGoogle Scholar
  63. Smith ES, Read DJ (2008) Mycorrhizal symbiosis. Academic, New YorkGoogle Scholar
  64. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Stockinger H, Walker C, Schüßler A (2009) “ Glomus intraradices DAOM197198”, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187. doi: 10.1111/j.1469-8137.2009.02874.x CrossRefPubMedGoogle Scholar
  66. Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474. doi: 10.1111/j.1469-8137.2010.03262.x CrossRefPubMedGoogle Scholar
  67. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical ordination, version 4.5. Microcomputer power, Ithaca, NewYorkGoogle Scholar
  68. Trejo D, Barois I, Sangabriel-Conde W (2016) Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Agrofor Syst 90:265–279. doi: 10.1007/s10457-015-9852-4 CrossRefGoogle Scholar
  69. Triantis KA, Borges PAV, Ladle RJ et al (2010) Extinction debt on oceanic islands. Ecography 33:285–294. doi: 10.1111/j.1600-0587.2010.06203.x Google Scholar
  70. Turrini A, Giovannetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza 22:81–97. doi: 10.1007/s00572-011-0419-6 CrossRefPubMedGoogle Scholar
  71. van der Gast CJ, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13:241–249. doi: 10.1111/j.1462-2920.2010.02326.x CrossRefPubMedGoogle Scholar
  72. van der Heijden MG, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:912–927Google Scholar
  73. Verbruggen E, Röling WFM, Gamper HA et al (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979. doi: 10.1111/j.1469-8137.2010.03230.x CrossRefPubMedGoogle Scholar
  74. Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037. doi: 10.1007/s00374-013-0801-y CrossRefGoogle Scholar
  75. Violi HA, Barrientos-Priego AF, Wright SF et al (2008) Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For Ecol Manag 254:276–290. doi: 10.1016/j.foreco.2007.08.016 CrossRefGoogle Scholar
  76. Walker C (1992) Systematics and taxonomy. Agronomie 12:887–897CrossRefGoogle Scholar
  77. Wang Y, Huang Y, Qiu Q et al (2011) Flooding greatly affects the diversity of Arbuscular Mycorrhizal fungi communities in the roots of wetland plants. PLoS One 6:e24512. doi: 10.1371/journal.pone.0024512 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wolfe BE, Mummey DL, Rillig MC, Klironomos JN (2007) Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community. Mycorrhiza 17:175–183. doi: 10.1007/s00572-006-0089-y CrossRefPubMedGoogle Scholar
  79. Wu Q-S, Srivastava AK, Zou Y-N (2013) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87. doi: 10.1016/j.scienta.2013.09.010 CrossRefGoogle Scholar
  80. Wubet T, Weiß M, Kottke I et al (2003) Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytol 161:517–528. doi: 10.1046/j.1469-8137.2003.00924.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Catarina Drumonde Melo
    • 1
    • 2
    • 3
  • Sara Luna
    • 3
  • Claudia Krüger
    • 4
  • Christopher Walker
    • 5
    • 6
  • Duarte Mendonça
    • 3
  • Henrique M. A. C. Fonseca
    • 7
  • Maria Jaizme-Vega
    • 8
  • Artur Câmara Machado
    • 3
  1. 1.Centre for Ecology, Evolution and Environmental Changes (cE3c) / Azorean Biodiversity Group (GBA) -Department of Agricultural SciencesUniversity of AzoresAzoresPortugal
  2. 2.Centre for Functional Ecology (CFE), Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  3. 3.Biotechnology Center of AzoresUniversity of Azores (CBA-UAç) - Department of Agricultural SciencesAzoresPortugal
  4. 4.Institute of BotanyAcademy of Sciences Czech RepublicPrůhoniceCzech Republic
  5. 5.Royal Botanic Garden EdinburghEdinburghUK
  6. 6.School of Plant BiologyUniversity of Western AustraliaPerthAustralia
  7. 7.Department of Biology & GeoBioTecUniversity of AveiroAveiroPortugal
  8. 8.Canarian Institute of Agricultural Research (ICIA), Finca “Isamar”, Ctra. de El BoquerónTenerifeSpain

Personalised recommendations