Skip to main content

Advertisement

Log in

Nitrate and flooding induce N2O emissions from soybean nodules

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Nitrous oxide (N2O) is one of the three main biogenic greenhouse gases (GHGs) and agriculture represents close to 30 % of the total N2O net emissions. In agricultural soils, N2O is emitted by two main microbial processes, nitrification and denitrification, both of which can convert synthetic nitrogen fertilizer into N2O. Legume-rhizobia symbiosis could be an effective and environmental-friendly alternative to nitrogen fertilization and hence, to mitigate soil N2O emissions. However, legume crops also contribute to N2O emissions. A better understanding of the environmental factors involved in the emission of N2O from nodules would be instrumental for mitigating the release of this GHG gas. In this work, in vivo N2O emissions from nodulated soybean roots in response to nitrate (0, 1, 2 and 4 mM) and flooding have been measured. To investigate the contribution of rhizobial denitrification in N2O emission from nodules, plants were inoculated with B. japonicum USDA110 and napA and nosZ denitrification mutants. The results showed that nitrate was essential for N2O emissions and its concentration enhanced N2O fluxes showing a statistical linear correlation, being the highest N2O fluxes obtained with 4 mM nitrate. When inoculated plants grown with 4 mM nitrate were subjected to flooding, a 150- and 830-fold induction of N2O emission rates from USDA110 and nosZ nodulated roots, respectively, was observed compared to non-flooded plants, especially during long-term flooding. Under these conditions, N2O emissions from detached nodules produced by the napA mutant were significantly lower (p < 0.05) than those produced by the wild-type strain (382 versus 1120 nmol N2O h−1 g−1 NFW, respectively). In contrast, nodules from plants inoculated with the nosZ mutant accumulated statistically higher levels of N2O compared to wild-type nodules (2522 versus nmol 1120 N2O h−1 g−1 NFW, p < 0.05). These results demonstrate that flooding is an important environmental factor for N2O emissions from soybean nodules and that B. japonicum denitrification is involved in such emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baggs EM (2008) A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Commun Mass Spectrom 22(11):1664–1672. doi:10.1002/rcm.3456

    Article  CAS  PubMed  Google Scholar 

  • Baggs EM, Philippot L (2011) Nitrous oxide production in terrestrial environment. In: Moir JWB (ed) Nitrogen cycling in bacteria. Molecular analysis. Caister Academic Press, 211–232

  • Baggs EM, Rees RM, Smith KA, Vinten AJA (2000) Nitrous oxide emission from soils after incorporation of crop residues. Soil Use Manag 16:82–87. doi:10.1111/j.1475-2743.2000.tb00179.x

    Article  Google Scholar 

  • Bedmar EJ, Robles EF, Delgado MJ (2005) The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem Soc Trans 33:141–144

    Article  CAS  PubMed  Google Scholar 

  • Bedmar EJ, Bueno E, Correa D, Torres MJ, Delgado MJ, Mesa S (2013) Ecology of denitrification in soils and plant-associated bacteria. In: Rodelas González B, Gonzalez-López J (eds) Beneficial plant-microbial interactions: Ecology and applications. CRC Press, Boca Ratón, Florida, pp 164–182

    Google Scholar 

  • Bueno E, Mania D, Frostegard A, Bedmar EJ, Bakken LR, Delgado MJ (2015) Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy. Front Microbiol. doi:10.3389/fmicb.2015.00537

    PubMed Central  PubMed  Google Scholar 

  • Cabrera JJ, Sánchez C, Gates AJ, Bedmar EJ, Mesa S, Richardson DJ, Delgado MJ (2011) The nitric oxide response in plant-associated endosymbiotic bacteria. Biochem Soc Trans 39:1880–1885. doi:10.1042/BST20110732

    Article  CAS  PubMed  Google Scholar 

  • Ciampitti IA, Ciarlo EA, Conti ME (2008) Nitrous oxide emissions from soil during soybean [(Glycine max (L.) Merrill] crop phenological stages and stubbles decomposition period. Biol Fertil Soils 44:581–588. doi:10.1007/s00374-007-0241-7

    Article  Google Scholar 

  • Delgado MJ, Bonnard N, Tresierra-Ayala A, Bedmar EJ, Müller P (2003) The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. Microbiology 149:3395–3403. doi:10.1099/mic.0.26620-0

    Article  CAS  PubMed  Google Scholar 

  • Delgado MJ, Casella S, Bedmar EJ (2007) Denitrification in rhizobia-legume symbiosis. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elservier Science, Amsterdam, pp 57–66

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877. doi:10.1104/pp. 017004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18. doi:10.1007/s11104-008-9668-3

    Article  CAS  Google Scholar 

  • Hirayama J, Eda S, Mitsui H, Minamisawa K (2011) Nitrate-dependent N2O emission from intact soybean nodules via denitrification by Bradyrhizobium japonicum Bacteroids. Appl Environ Microbiol 77:8787–8790. doi:10.1128/AEM.06262-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inaba S, Tanabe K, Eda S, Ikeda S, Higashitani A, Mitsui H, Minamisawa K (2009) Nitrous oxide emission and microbial community in the rhizosphere of nodulated soybeans during the late growth period. Microbes Environ 24:64–67. doi:10.1264/jsme2.ME08544

    Article  PubMed  Google Scholar 

  • Inaba S, Ikenishi F, Itakura M, Kikuchi M, Eda S, Chiba N, Katsuyama C, Suwa Y, Mitsui H, Minamisawa K (2012) N2O Emission from degraded soybean nodules depends on denitrification by Bradyrhizobium japonicum and other microbes in the rhizosphere. Microbes Environ 27:470–476. doi:10.1264/jsme2.ME12100

    Article  PubMed Central  PubMed  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Core Writing Team, Pachauri RK, Meyer LA (eds). IPCC, Geneva, Switzerland

  • Itakura M, Uchida Y, Akiyama H et al (2013) Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nat Clim Chang 3:208–212. doi:10.1038/NCLIMATE1734

    Article  CAS  Google Scholar 

  • Kokobun M (2013) Genetic and cultural improvement of soybean for waterlogged conditions in Asia. Field Crop Res 152:3–7. doi:10.1016/j.fcr.2012.09.022

    Article  Google Scholar 

  • MacKenzie AF, Fan MX, Cadrin F (1998) Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. J Environ Qual 27(3):698–703. doi:10.2134/jeq1998.00472425002700030029x

    Article  CAS  Google Scholar 

  • Meakin GE, Bueno E, Jepson B, Bedmar EJ, Richardson DJ, Delgado MJ (2007) The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology 153:411–419. doi:10.1099/mic.0.2006/000059-0

    Article  CAS  PubMed  Google Scholar 

  • Mesa S, de Dios AJ, Bedmar EJ, Delgado MJ (2004) Expression of the nir, nor and nos denitrification genes from Bradyrhizobium japonicum in soybean root nodules. Physiol Plant 120:205–211

    Article  CAS  PubMed  Google Scholar 

  • Mesa S, Hauser F, Friberg M, Malaguti E, Fischer HM, Hennecke H (2008) Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum. J Bacteriol 190(20):6568–6579. doi:10.1128/JB.00748-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholas DJD, Nason A (1957) Determination of nitrate and nitrite. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic, New York, pp 981–984

    Google Scholar 

  • Pauleta SR, Dell’Acqua SW, Moura I (2013) Nitrous oxide reductase. A review. Coordin Chem Rev 257:332–349. doi:10.1016/j.ccr.2012.05.026

    Article  CAS  Google Scholar 

  • Richardson D, Felgate H, Watmought N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle could enzymatic regulation hold the key? Trends Biotechnol 27:388–397. doi:10.1016/j.tibtech.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Rigaud J, Puppo A (1975) Indole-3-acetic acid catabolism by soybean bacteroids. J Gen Microbiol 88:223–228

    Article  Google Scholar 

  • Sameshima-Saito R, Chiba K, Hirayama J, Itakura M, Mitsui H, Eda S, Minamisawa K (2006) Symbiotic Bradyrhizobium japonicum reduces N2O surrounding the soybean root system via nitrous oxide reductase. Appl Environ Microbiol 72:2526–2532. doi:10.1128/AEM.72.4.2526-2532.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez C, Gates AJ, Meakin GE, Uchiumi T, Girard L, Richardson DJ, Bedmar EJ, Delgado MJ (2010) Production of nitric oxide and nitrosylleghaemoglobin complexes in soybean nodules in response to flooding. Mol Plant Microbe 23:702–711. doi:10.1094/MPMI-23-5-0702

    Article  Google Scholar 

  • Sánchez C, Tortosa G, Granados A, Delgado A, Bedmar EJ, Delgado MJ (2011a) Involvement of Bradyrhizobium japonicum denitrification in symbiotic nitrogen fixation by soybean plants subjected to flooding. Soil Biol Biochem 43:212–217. doi:10.1016/j.soilbio.2010.09.020

    Article  Google Scholar 

  • Sánchez C, Cabrera JJ, Gates AJ, Bedmar EJ, Richardson DJ, Delgado MJ (2011b) Nitric oxide detoxification in the rhizobia-legume symbiosis. Biochem Soc Trans 39(1):184–188. doi:10.1042/BST0390184

    Article  PubMed  Google Scholar 

  • SoyStats (2015) SoyStats, a Reference Guide to Important Soybean Facts & Figures. American Soybean Association. http://soystats.com. Accessed 1 Jul 2015

  • Streeter J (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7:1–23

    Article  CAS  Google Scholar 

  • Thomas AL, Guerreiro SMC, Dek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root. Ann Bot-Lond 96:1191–1198. doi:10.1093/aob/mci272

    Article  CAS  Google Scholar 

  • Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans R Soc Lond B Biol Sci 367:1157–1168. doi:10.1098/rstb.2011.0415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trung BC, Yoshida S (1983) Improvement of Leonard jar assembly for screening of effective rhizobium. Soil Sci Plant Nutr 29(1):97–100

    Article  Google Scholar 

  • Uchida Y, Akiyama H (2013) Mitigation of postharvest nitrous oxide emissions from soybean ecosystems: a review. Soil Sci Plant Nutr 59:477–487. doi:10.1080/00380768.2013.805433

    Article  CAS  Google Scholar 

  • UNEP (2013) Drawing Down N2O to Protect Climate and the Ozone Layer. A UNEP Synthesis Report. United Nations Environment Programme (UNEP), Nairobi, Kenya

  • Velasco L, Mesa S, Xu C, Delgado MJ, Bedmar EJ (2004) Molecular characterization of nosRZDFYLX genes coding for denitrifying nitrous oxide reductase of Bradyrhizobium japonicum. Antonie Van Leeuwenhoek 85:229–235

    Article  CAS  PubMed  Google Scholar 

  • Venterea RT, Halvorson AD, Kitchen N, Liebig MA et al (2012) Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front Ecol Environ 10(10):562–570. doi:10.1890/120062

    Article  Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206(1):57–73. doi:10.1111/nph.13209

    Article  CAS  PubMed  Google Scholar 

  • Wrage N, Van Groenigen JW, Oenema O, Baggs EM (2005) A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Commun Mass Spectrom 19(22):3298–3306. doi:10.1002/rcm.2191

    Article  CAS  PubMed  Google Scholar 

  • Zumft WG (1997) Cell Biol Mol Basis Denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants AGL2013-45087-R and AGL2010-18607 from the Spanish Ministry of Economy and Competitiveness and P12-AGR-1968 from Consejería de Innovación, Ciencia y Empresa of Junta de Andalucía (Spain), all of them co-financed by the European Regional Development Fund (ERDF). Support of Junta de Andalucía to Research Group BIO-275 is also acknowledged. The authors also thank D. Francis Lewis the improvement of the written English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Tortosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortosa, G., Hidalgo, A., Salas, A. et al. Nitrate and flooding induce N2O emissions from soybean nodules. Symbiosis 67, 125–133 (2015). https://doi.org/10.1007/s13199-015-0341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0341-3

Keywords

Navigation