Skip to main content
Log in

Mycorrhiza in floriculture: difficulties and opportunities

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with the roots of about 80% of plant species. The arbuscular mycorrhizal (AM) symbiosis benefits the growth and development of plants, among them a variety of ornamental horticulture (floriculture) plants. AMF have been shown to benefit plants that suffer from stunted growth, including that stemming from abiotic stress. Many floriculture crops are grown in the semi-arid environment of the Mediterranean region, and therefore AMF application may be implemented in floriculture practices to significantly promote crop growth and yield. However, for successful commercial utilization of the AM symbiosis and its introduction into ornamental floriculture practices, several considerations must be taken into account. These are highlighted and examined in the present review. They include the prerequisite of availability of high quantities of good-quality AMF inocula, the need to use different types and dosages of AMF inocula, at different times of inoculation, and the agricultural crop growth practices that are best-suited for integration with AMF inoculation. The difficulties and opportunities in AMF usage in floriculture are discussed and suggestions on different ways to solve the encountered difficulties are made, to promote cost-effective use of AMF in floriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Augé RM, Scheckel KA, Wample RL (1986) Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol 103:107–116

    Article  Google Scholar 

  • Augé RM, Scheckel KA, Wample RL (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to water deficit stress. Plant Soil 99:291–302

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Aziz T, Yuen JE, Habte M (1990) Response of pineapple to mycorrhizal inoculation and fosetyl-Al treatment. Commun Soil Sci Plant Anal 21:2309–2317

    Article  CAS  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509–524

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1993) Mycorrhiza and crops. In: Tommerup I (ed) Advances in Plant Pathology, Vol. 9. Mycorrhiza: A Synthesis. Academic, London, pp 167–189

    Google Scholar 

  • Burrows RL, Pfleger FL (2002) Host responses to AMF from plots differing in plant diversity. Plant Soil 240:169–180

    Article  CAS  Google Scholar 

  • Dag A, Yermiyahu U, Ben-Gal A, Zipori I, Kapulnik Y (2008) Nursery and post-transplant field response of olive trees to arbuscular mycorrhizal fungi in an arid region. Crop and Pasture Science 60:427–433

    Article  Google Scholar 

  • De Pascale S, Maggio A (2005) Sustainable protected cultivation at a Mediterranean climate. Perspectives and challenges. Acta Horticulturae (ISHS) 691:29–42

    Google Scholar 

  • De Pascale S, Maggio A (2008) Plant stress management in semiarid greenhouse. Acta Horticulturae (ISHS) 797:205–215

    Google Scholar 

  • Dodd JC, Thomson BD (1994) The screening and selection of inoculant arbuscular-mycorrhizal and ectomycorrhizal fungi. Plant Soil 159:149–158

    Google Scholar 

  • Douds DD Jr, Nagahashi G, Pfeffer PE, Reider C, Kayser WM (2006) On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Bioresour Technol 97:809–818

    Article  CAS  PubMed  Google Scholar 

  • Druege U, Xylaender M, Zerche S, von Alten H (2006) Rooting and vitality of poinsettia cuttings was increased by arbuscular mycorrhiza in the donor plants. Mycorrhiza 17:67–72

    Article  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Feldmann F, Hutter I, Schneider C (2009) Best production practice of arbuscular mycorrhizal inoculum. Soil Biology 18:319–336

    Article  Google Scholar 

  • Feldmann F, Idczak E (1992) Inoculum production of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries. In: Norris JR, Read DJ, Varma AK (eds) Methods in Microbiology. Academic, London, pp 339–357

    Google Scholar 

  • Garrido JMG (2009) Arbuscular mycorrhizae as defense against pathogens. In: White JF Jr, Torres MS (eds) Defensive Mutualism in Microbial Symbiosis. CRC Press, Boca Raton, FL, pp 183–198

    Google Scholar 

  • Gaur A, Adholeya A (2005) Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular-mycorrhizal inocula in marginal soil amended with organic matter. J Plant Nutr 28:707–723

    Article  CAS  Google Scholar 

  • Genre A, Bonfante P (2005) Building a mycorrhizal cell: How to reach compatibility between plants and arbuscular mycorrhizal fungi. J Plant Interact 1:3–13

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  PubMed  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (1990) Potentialities and procedures for the use of endomycorrhizas with special emphasis on high value crops. In: Whipps JM, Lumsden B (eds) Biotechnology of Fungi for Improving Plant Growth. Cambridge University Press, Cambridge, pp 41–54

    Google Scholar 

  • Gianinazzi-Pearson V, Brechenmacher L (2004) Functional genomics of arbuscular mycorrhiza: Decoding the symbiotic cell programme. Can J Bot 82:1228–1234

    Article  CAS  Google Scholar 

  • Giovannetti M, Turrini A, Strani P, Sbrana C, Avio L, Pietrangeli B (2006) Mycorrhizal fungi in ecotoxicological studies: Soil impact of fungicides, insecticides and herbicides. Prevention Today 2:47–61

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Guillemin JP, Gianinazzi S (1992) Fungicides interactions with VA fungi in Ananas comosus grown in a tropical environment. In: Read DJ, Lewis DH, Fitter AH, Alexanders IJ (eds) Mycorrhizas in Ecosystems. CAB International, Wallingford, pp 381–382

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    Article  CAS  PubMed  Google Scholar 

  • Javaid A, Riaz T (2008) Mycorrhizal colonization in different varieties of gladiolus and its relation with plant vegetative and reproductive growth. Int J Agric Biol 10:278–282

    Google Scholar 

  • Johnson NC (1993) Can Fertilization of Soil Select Less Mutualistic Mycorrhizae? Ecol Appl 3:749–757

    Article  Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239

    Article  Google Scholar 

  • Kapulnik Y, Heuer B, Patterson NA, Sadan D, Bar Z, Nir G, Kishinevsky B (1994) Stunting syndrome in peanuts and agronomic approaches for its release. Symbiosis 16:267–278

    Google Scholar 

  • Kapulnik Y, Koltai H (2009) Effect of arbuscular mycorrhiza symbiosis on enhancement of tolerance to abiotic stresses. In: White J, Torres M (eds) Defensive Mutualism in Microbial Symbiosis. Taylor & Francis Group, LLC, Boca Raton, FL, pp 217–234

    Google Scholar 

  • Koltai H, Gadkar V, Kapulnik Y (2010) Biochemical and practical views of arbuscular mycorrhizal fungus-host association in horticultural crops. In: Janick J (ed) Horticultural Reviews, Vol. 36. Wiley, Hoboken, pp 257–287

    Google Scholar 

  • Linderman RG (2003) Arbuscular mycorrhiza and growth responses of several ornamental plants grown in soilless peat-based medium amended with coconut dust (Coir). HortTechnology 13:482–486

    Google Scholar 

  • Meir, D., Pivonia, S., Levita, R., Dori, I., Ganot, L., Meir, S., Salim, S., Resnick, N., Wininger, S., Shlomo, E., and Koltai, H. 2010. Application of mycorrhizae to ornamental horticultural crops: Lisianthus (Eustoma grandiflorum) as a test case. Spanish Journal of Agriculture Research, in press.

  • Menge JA, Lembright H, Johnson ELV (1977) Utilization of mycorrhizal fungi in citrus nurseries. Proceedings of the International Society of Citriculture 1:129–132

    Google Scholar 

  • Perner H, Schwarz D, Bruns C, Mäder P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    Article  PubMed  Google Scholar 

  • Pinior A, Grunewaldt-Stöcker G, Von Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605

    Article  CAS  PubMed  Google Scholar 

  • Pivonia, S., Levita, R., Cohen, S., Gamliel, A., Wininger, S., Ben-Gal, A., Yermiyahu, U., and Kapulnik, Y. 2008. Reducing the effects of biotic and abiotic stresses on pepper cultivated under arid conditions using arbuscular mycorrhizal (AM) technology. In: Mycorrhiza Works. Feldmann, F., Kapulnik, Y., and Baar, J., eds. Deutsche Phytomedizinische Gesellschaft, Braunschweig, Germany, pp. 197-208. ISBN 978-3-8001-8919-9.

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Porter WM (1979) The ’most probable number' method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17:515–519

    Article  Google Scholar 

  • Requena N, Serrano E, Ocon A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68:33–40

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Scagel CF (2004) Soil pasteurization and mycorrhizal inoculation alter flower production and corm composition of Brodiaea laxa “Queen Fabiola”. HortScience 39:1432–1437

    Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Seymour NP (1994) Phytotoxicity of fosetyl Al and phosphonic acid to maize during production of vesicular-arbuscular mycorrhizal inoculum. Plant Dis 78:441–446

    Article  CAS  Google Scholar 

  • Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJ, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol 144:1455–1466

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Sohn BK, Kim KY, Chung SJ, Kim WS, Park SM, Kang JG, Rim YS, Cho JS, Kim TH, Lee JH (2003) Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci Hortic 98:173–183

    Article  Google Scholar 

  • Sreenivasa MN, Bagyaraj DJ (1988) Selection of a suitable substrate for mass multiplication of Glomus fasciculatum. Plant Soil 109:125–127

    Article  Google Scholar 

  • Sylvia DM, Jarstfer GJ (1994) Production of inoculum and inoculation with arbuscular mycorrhizal fungi. In: Robson AD, Abbott LK, Malajczuk N (eds) Management of Mycorrhizas in Agriculture, Horticulture and Forestry. Kluwer, Dordrecht, pp 23 l–238

    Google Scholar 

  • Tripathi S, Kamal S, Sheramati I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 281–306

    Chapter  Google Scholar 

  • Vosátka M, Albrechtová J, Patten R (2008) The international market development for mycorrhizal technology. In: Varma A (ed) mycorrhiza, 3rd edn. Springer, Berlin, pp 419–438

    Chapter  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinanit Koltai.

Additional information

This paper is part of the special issue ‘The Potential of Exploiting Mycorrhizal Associations in Semi-Arid Regions’

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koltai, H. Mycorrhiza in floriculture: difficulties and opportunities. Symbiosis 52, 55–63 (2010). https://doi.org/10.1007/s13199-010-0090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0090-2

Keywords

Navigation