Skip to main content

Advertisement

Log in

Bacterial symbionts in insects: balancing life and death

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Arthropods, particularly insects, form successful long-term symbioses with endosymbiotic bacteria. The associations between insects and endosymbionts are remarkably stable; many stretch back several hundred million years in evolutionary time. With the exception, perhaps, of the filarial nematodes no other group of metazoans shows such a proclivility for their intracellular symbionts. The identification and classification of bacterial symbionts and hosts has grown rapidly over the last two decades and these relationships form a continuum from classical mutualism to parasitism. Complete genomes have been sequenced for many of these bacteria and some of their hosts. Now more intractable questions regarding endosymbiosis are being addressed. Investigations on the role of the host immune system in the maintenance of symbiosis, the nature of bacteriophages and transposable elements found in the genomes of many bacterial symbionts, and the molecular mechanisms involved in establishing reproductive phenotypes such as parthenogenesis, male killing, cytoplasmic incompatibility and feminization have been recently reported. This review will focus on the impact of the secondary endosymbionts Wolbachia, Cardinium, and Spiroplasma on host fitness and immunity and will revisit the question of whether these bacteria are friend or foe from an insect’s point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams JM, White K, Fessler LI, Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117:29–43

    PubMed  CAS  Google Scholar 

  • Ahrens MJ, Shoemaker DD (2005) Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evol Biol 5:1–11

    Article  Google Scholar 

  • Akman L, Yamashita A, Hidemi W, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–408

    Article  PubMed  CAS  Google Scholar 

  • Almagor M, Kahane I, Yatziv S (1984) Role of superoxide anion in host cell injury induced by Mycoplasma pneumoniae infection. J Clin Investig 73:842–847

    Article  PubMed  CAS  Google Scholar 

  • Ammar E-D, Hogenhout SA (2005) Use of immunofluorescence confocal laser scanning microscopy to study distribution of the bacterium corn stunt spiroplasma in vector leafhoppers (Hemiptera: Cicadellidae) and in host plants. Ann Entomol Soc Am 98:820–826

    Article  Google Scholar 

  • Ammar E-D, Hogenhout SA (2006) Mollicutes associated with arthropods and plants. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Boca Raton, pp 97–118

    Google Scholar 

  • Anbutsu H, Fukatsu T (2003) Population dynamics of male-killing and non-male-killing spiroplasmas in Drosophila melanogaster. Appl Environ Microbiol 69:1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Anbutsu H, Fukatsu T (2006) Tissue-specific infection dynamics of male-killing and nonmale-killing spiroplasmas in Drosophila melanogaster. FEMS Microl Ecol 57:40–46

    Article  CAS  Google Scholar 

  • Arakawa T (1994) Superoxide generation in vitro in lepidopteran larval haemolymph. J Insect Physiol 40:165–171

    Article  Google Scholar 

  • Arakawa T (1995a) Possible involvement of an enzymatic system for superoxide generation in lepidopteran larval haemolymph. Arch Insect Biochem Physiol 29:281–291

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T (1995b) Superoxide generative reaction in insect haemolymph and its mimic model system with surfactants in vitro. Insect Biochem Mol Biol 25:247–253

    Article  CAS  Google Scholar 

  • Ayres JS, Schneider DS (2006) Genomic dissection of microbial pathogenesis in cultured Drosophila cells. Trends Microbiol 14:101–104

    Article  PubMed  CAS  Google Scholar 

  • Azzouna A, Greve P, Martin G (2004) Sexual differentiation traits in functional males with female genital apertures (fga) in the woodlice Armadillidium vulgare Latr. (Isopoda, Crustacea). Gen Comp Endocrinol 138:42–49

    Article  PubMed  CAS  Google Scholar 

  • Babior BM, Kipnes RS, Curnutte JT (1973) The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Investig 52:741–744

    Article  PubMed  CAS  Google Scholar 

  • Bai X, Zhang J, Holford IR, Hogenhout SA (2004) Comparative genomics identifies genes shared by distantly related insect-transmitted plant pathogenic mollicutes. FEMS Microbiol Lett 235:249–258

    Article  PubMed  CAS  Google Scholar 

  • Baldo L, Werren JH (2007) Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordanec with MLST. Curr Microbiol 55:81–87

    Article  PubMed  CAS  Google Scholar 

  • Baldo L, Bartos JD, Werren JH, Bazzocchi C, Casiraghi M, Panelli S (2002) Different rates of nucleotide substitutions in Wolbachia endosymbionts of arthropods and nematodes: arms race or host shifts? Parassitologia 44:179–187

    PubMed  CAS  Google Scholar 

  • Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110

    Article  PubMed  CAS  Google Scholar 

  • Baldo L, Ayoub NA, Hayashi CY, Russell JA, Stahlhut JK, Werren JH (2008) Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol Ecol 17:557–569

    PubMed  CAS  Google Scholar 

  • Bandi C, Slatko B, O’Neill SL (1999) Wolbachia genomes and the many faces of symbiosis. Parasitol Today 15:428–429

    Article  PubMed  CAS  Google Scholar 

  • Bao SN, Kitajima EW, Callaini G, Dallai R (1996) Virus-like particles and rickettsia-like organisms in male germ and cyst cells of Bemisia tabaci (Homoptera, Aleyrodidaae. J Invertebr Pathol 67:309–311

    Article  PubMed  Google Scholar 

  • Batista PD, Keddie BA, Dosdall LM, Harris HL (2009) Phylogenetic placement and evidence for horizontal transfer of Wolbachia in Plutella xylostella (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Canadian Entomologist, in press

  • Bentley J, Veneti Z, Heraty J, Hurst GD (2007) The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa. BMC Biology 5, doi:10.1186/1741-7007-1185-1189.

  • Bergin D, Reeves EP, Renwick J, Wientjies FB, Kavanagh K (2005) Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170

    Article  PubMed  CAS  Google Scholar 

  • Bideshi DK, Tan Y, Bigot Y, Federici BA (2005) A viral caspase contributes to modified apoptosis for virus transmission. Genes Dev 19:1416–1421

    Article  PubMed  CAS  Google Scholar 

  • Bigliardi E, Sacchi L, Genchi M, Alma A, Pajoro M, Daffonchio D, Marzorati M, Avanzati AM (2006) Ultrastructure of a novel Cardinium sp. symbiont in Scaphoideus titanus (Hemiptera: Cicadellidae). Tissue Cell 38:257–261

    Article  PubMed  CAS  Google Scholar 

  • Bordenstein S (2003) Symbiosis and the origin of species. In: Miller KBaTA (ed) Insect symbiosis. CRC, Boca Raton, pp 283–304

    Google Scholar 

  • Bordenstein S, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21:1981–1991

    Article  PubMed  CAS  Google Scholar 

  • Bordenstein S, Reznikoff WS (2005) Mobile DNA in obligate intracellular bacteria. Nature Reviews Microbiology 3

  • Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia and arthropods. PLoS Pathog 2:e43

    Article  PubMed  Google Scholar 

  • Bourtzis K, Dobson SL, Braig HR, O’Neill SL (1998) Rescuing Wolbachia have been overlooked. Nature 391:852–853

    Article  PubMed  CAS  Google Scholar 

  • Bourtzis K, Pettigrew MM, O’Neill SL (2000) Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol 9:635–639

    Article  PubMed  CAS  Google Scholar 

  • Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL (2003) Developmental origin and evolution of bacteriocytes in the aphid-Buchnera symbiosis. PLoS Biol 1:70–76

    Article  Google Scholar 

  • Brandt SM, Dionne MS, Khush RS, Pham LN, Vigdal TJ, Schneider DS (2004) Secreted bacterial effectors and host-produced Eiger/TNF drive death in a Salmonella-infected fruit fly. PLoS Biol 2:e418

    Article  PubMed  CAS  Google Scholar 

  • Breeuwer JAJ, Jacobs G (1996) Wolbachia: intracellular manipulators of mite reproduction. Exp Appl Acarol 20:421–434

    Article  PubMed  CAS  Google Scholar 

  • Brennan CA, Anderson KV (2004) Drosophila: the genetics of innate immune recognition and response. Annu Rev Immunol 22:457–483

    Article  PubMed  CAS  Google Scholar 

  • Brennan LJ, Keddie BA, Braig HR, Harris HL (2008). The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS One 3, doi: 10.1371/journal.pone.0002083.

  • Brinton LP, Burgdorfer W (1976) Cellular and subcellular organization of the 277F agent, a spiroplasma from the rabbit tick Haemaphysalis leporispalustris. Int J Syst Bacteriol 26:554–560

    Article  Google Scholar 

  • Brownlie JC, O’Neill SL (2006) Wolbachia genomics: accelerating our understanding of a pervasive symbiosis. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Baco Raton, pp 175–186

    Google Scholar 

  • Casiraghi M, Favia G, Cancrini G, Bartoloni A, Bandi C (2001) Molecular identification of Wolbachia from the filarial nematode Marsonella ozzardi. Parasitol Res 87:417–420

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Hurst GDD, Mercot H (2003) Evolutionary consequences of Wolbachia infections. Trends Genet 19:217–223

    Article  PubMed  CAS  Google Scholar 

  • Chigira A, Miura K (2005) Detection of ‘Candidatus Cardinium’ bacteria from the haploid host Brevipalpus californicus (Acari: Tenuipalpidae) and effect on the host. Exp Appl Acarol 37:107–116

    Article  PubMed  Google Scholar 

  • Christie PJ (2001) Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40:294–305

    Article  PubMed  CAS  Google Scholar 

  • Clark ME, Karr TL (2002) Distribution of Wolbachia within Drosophila reproductive tissue: implications for the expression of cytoplasmic incompatibility. Integr Comp Biol 42:332–339

    Article  Google Scholar 

  • Clark ME, Anderson CL, Cande J, Karr TL (2005) Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research. Genetics 170:1667–1675

    Article  PubMed  Google Scholar 

  • Clarke TE, Clem RJ (2003) In vivo induction of apoptosis correlating with reduced infectivity during baculovirus infection. J Virol 77:2227–2232

    Article  PubMed  CAS  Google Scholar 

  • Cline SD, Hanawalt PC (2003) Who’s on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 4:361–372

    Article  PubMed  CAS  Google Scholar 

  • Cohen AJ, Williamson DL, Oishi K (1987) SpV3 viruses of Drosophila spiroplasmas. Isr J Med Sci 23:429–433

    PubMed  CAS  Google Scholar 

  • Cole BC, Ward JR, Martin CH (1968) Hemolysin and peroxide activity of Mycoplasma species. J Bacteriol 95:2022–2030

    PubMed  CAS  Google Scholar 

  • Counce SJ, Poulson DF (1962) Developmental effects of the sex ratio agent in embryos of Drosophila willistoni. Journal of Experimental Zoology 151

  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Aldo M (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, Dally EL, Jomantiene R, Zhao Y, Roe B, Lin S, Shao J (2005) Cryptic plasmid pSKU146 from the wall-less plant pathogen Spiroplasma kunkelii encodes an adhesin and components of a type IV translocation-related conjugation system. Plasmid 53:179–190

    Article  PubMed  CAS  Google Scholar 

  • De Luna CJ, Moro CV, Guy JH, Zenner L, Sparagano OAE (2009) Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae). Exp Appl Acarol 48:105–113

    Article  PubMed  Google Scholar 

  • Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98:6247–6252

    Article  PubMed  CAS  Google Scholar 

  • Dedeine F, Vavre F, Shoemaker DD, Bouletreau M (2004) Intra-individual coexistence of a Wolbachia strain required for host oogenesis with two strains inducing cytoplasmic incompatibility in the wasp Asobara tabida. Evolution 58:2167–2174

    PubMed  Google Scholar 

  • Dedeine F, Bouletreau M, Vavre F (2005) Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity 95:394–400

    Article  PubMed  CAS  Google Scholar 

  • Delmotte, F., Rispe, C., Schaber, J., Silva, F.J., and Moya, A. (2006). Tempo and mode of early gene loss in endosymbiotic bacteria from insects. BMC Evolutionary Biology 6, doi:10.1186/1471-2148-1186-1156.

  • Devamanoharan PS, Santucci LA, Hong JE, Tian X, Silverman DJ (1994) Infection of human endothelial cells by Rickettsia rickettsii causes a significant reduction in the levels of key enzymes involved in protection against oxidative injury. Infect Immun 62:2619–2621

    PubMed  CAS  Google Scholar 

  • Dobson SL (2003) Wolbachia pipientis: impotent by association. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Boca Raton

    Google Scholar 

  • Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler J-L (2005) The Jak-STAT signaling pathway is required but not sufficient for the antivial response of drosophila. Nat Immunol 6:946–953

    Article  PubMed  CAS  Google Scholar 

  • Dow JAT, Davies SA (2006) The malpighian tubule: rapid insights from post-genomic biology. J Insect Physiol 52:365–378

    Article  PubMed  CAS  Google Scholar 

  • Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and HGE agent as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165

    PubMed  CAS  Google Scholar 

  • Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstadter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27. doi: 10.1186/1741-7007-6-27

    Article  PubMed  CAS  Google Scholar 

  • Dyer KA, Jaenike J (2005) Evolutionary dynamics of a spatially structured host-parasite association: Drosophila innubia and male-killing Wolbachia. Evolution 59:1518–1528

    PubMed  Google Scholar 

  • Dyson EA, Hurst GDD (2004) Persistance of an extreme sex-ratio bias in a natural population. Proc Natl Acad Sci USA 101:6520–6523

    Article  PubMed  CAS  Google Scholar 

  • Dziarski R (2004) Peptidoglycan recognition proteins (PGRPs). Mol Immunol 40:877–886

    Article  PubMed  CAS  Google Scholar 

  • Enigl M, Schausberger P (2007) Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp Appl Acarol 42:75–85

    Article  PubMed  Google Scholar 

  • Eremeeva ME, Silverman DJ (1998) Rickettsia rickettsii infection of the EA.hy 926 endothelial cell line: morphological reponse to infection and evidence for oxidative injury. Microbiology 144:2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M (2006) Phylogenetic relationships of the Wolbachia of nematodes and arthropods. PLoS Pathogens 2, doi: 10.1371/journal.ppat.0020094.

  • Ferree PM, Frydman HM, Li JM, Cai J, Weischaus E, Sullivan W (2005a) Wolbachia utilizes host microtubules and dynein for anterior localization in the Drosophila embryo. PLoS Pathog 1:e14

    Article  PubMed  CAS  Google Scholar 

  • Ferree PM, Frydman HM, Li JM, Cai J, Weischaus E, Sullivan W (2005b) Wolbachia utilizes host microtubules and dynein for anterior localization in the Drosophila oocyte. PLoS Pathog 1:e14

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169

    PubMed  CAS  Google Scholar 

  • Floate KD, Kyei-Poku GK, Coghlin PC (2006) Overview and relevance of Wolbachia bacteria in biocontrol research. Biocontrol Sci Technol 16:767–788

    Article  Google Scholar 

  • Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J et al (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121

    Article  PubMed  CAS  Google Scholar 

  • Friesen PD, Miller LK (2001) Insect viruses. In: Knipe D, Howley P (eds) Fields Virology. Philadelphia, Lippincott, pp 599–628

    Google Scholar 

  • Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580:2910–2916

    Article  PubMed  CAS  Google Scholar 

  • Fujii Y, Kubo T, Ishikawa H, Sasaki T (2004) Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 317:1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu T, Nikoh N (2000) Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl Environ Microbiol 66:643–650

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 67:1284–1291

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu T, Kondo N, Nobuyuki I, Nikoh N (2003) Discovery of symbiont-host horizontal genome transfer: a beetle carrying two bacterial and one chromosomal Wolbachia endosymbionts. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Boca Raton

    Google Scholar 

  • Funk DJ, Helbling L, Wernegreen JJ, Moran N (2000) Intraspecific phylogenetic congruence among multiple symbiont genomes. Proc Roy Soc B 267:2517–2521

    Article  CAS  Google Scholar 

  • Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF (2006) Wolbachia infection suppresses both host defence and parasitoid counter-defence. Proc Roy Soc B 273:791–796

    Article  Google Scholar 

  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler J-L (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7:590–597

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Lehrer RI (1999) Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today 5:292–297

    Article  PubMed  CAS  Google Scholar 

  • Gasparich GE, Whitcomb RF, Dodge D, French FE, Glass J, Williamson DL (2004) The genus Spiroplasma and its non-helical descendants: phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. Int J Syst Evol Microbiol 54:893–918

    Article  PubMed  CAS  Google Scholar 

  • Gavotte L, Vavre F, Henri H, Ravallec M, Stouthamer R, Bouletreau M (2004) Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Mol Biol 13:147–153

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Holldobler B et al (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci US 100:9388–9393

    Article  CAS  Google Scholar 

  • Gomez-Valero L, Silva FJ, Simon JC, Latorre A (2007) Genome reduction of the aphid endosymbiont Buchnera aphidicola in a recent evolutionaery time scale. Gene 389:87–95

    Article  PubMed  CAS  Google Scholar 

  • Gotoh T, Noda H, Homg X-Y (2003) Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity 91:208–216

    Article  PubMed  CAS  Google Scholar 

  • Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20

    Article  PubMed  CAS  Google Scholar 

  • Govind S, Nehm RH (2004) Innate immunity in fruit flies: a textbook example of genomic recycling. PLoS Biol 2:E276

    Article  PubMed  CAS  Google Scholar 

  • Groot TV, Breeuwer JA (2006) Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Exp Appl Acarol 39:257–271

    Article  PubMed  Google Scholar 

  • Ha E-M, Oh C-T, Bae Y-S, Lee W-J (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850

    Article  PubMed  CAS  Google Scholar 

  • Hames C, Halbedel S, Hoppert M, Frey J, Stulke J (2009) Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae. J Bacteriol 191:747–753

    Article  PubMed  CAS  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  • Harris HL, Braig HR (2003) Sperm chromatin remodelling and Wolbachia-induced cytoplasmic incompatibility in Drosophila. Biochem Cell Biol 81:229–240

    Article  PubMed  CAS  Google Scholar 

  • Haselkorn TS, Markow TA, Moran NA (2009) Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila. Mol Ecol 18:1294–1305

    Article  PubMed  CAS  Google Scholar 

  • Hetru C, Troxler L, Hoffmann JA (2003) Drosophila melanogaster antimicrobial defense. J Infect Dis 187(Suppl 2):S327–334

    Article  PubMed  CAS  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?-A statistical analysis of current data. FEMS Microbiol Lett 201:215–220

    Article  CAS  Google Scholar 

  • Hoffmann AA (2005) Incompatible mosquitoes. Nature 436:189

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JA, Reichhart J-M (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3:121–126

    Article  PubMed  CAS  Google Scholar 

  • Hoidal JR (2001) Reactive oxygen species and cell signaling. Am J Respir Cell Mol Biol 25:661–663

    PubMed  CAS  Google Scholar 

  • Hornett EA, Charlat S, Duplouy AMR, Davies N, Roderick GK, Wedell N, Hurst GDD (2006) Evolution of male-killer suppression in a natural population. PLoS Biol 4:e283

    Article  PubMed  CAS  Google Scholar 

  • Hornett EA, Duplouy AM, Davies N, Roderick GK, Wedell N, Hurst GDD, Charlat S (2008) You can’t keep a good parasite down: evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution 62:1258–1263

    Article  PubMed  Google Scholar 

  • Hotopp JCD, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Torres MCM, Giebel JD, Kumar N, Ishmael N, Wang S et al (2007) Wisepread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  PubMed  CAS  Google Scholar 

  • Howe D, Heinzen RA (2006) Coxiella burnetti inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 8:496–507

    Article  PubMed  CAS  Google Scholar 

  • Hoy M, Jeyaprakash A (2008) Symbionts, including pathogens, of the predatory mite Metaseiulus occidentalis: current and future analysis methods. Exp Appl Acarol 46:329–347

    Article  PubMed  Google Scholar 

  • Hunter MS, Zchori-Fein E (2006) Inherited Bacteroidetes symbionts in arthropods. In: Bourtzis K, Miller TA (eds) Insect Symbiosis. CRC, Boca Raton, pp 39–56

    Google Scholar 

  • Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteriodetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond B Biol Sci 270:2185–2190

    Article  Google Scholar 

  • Hurst GDD, Jiggins FM (2000) Male-killing bacteria in insects: mechanisms, incidence and implications. Emerg Infect Dis 6:329–336

    Article  PubMed  CAS  Google Scholar 

  • Hurst GDD, Majerus MEN (1993) Why do maternally inherited microorganisms kill males? Heredity 71:81–95

    Article  Google Scholar 

  • Hurst GDD, Hammarton TC, Obrycki JJ, Majerus TM, Walker LE, Bertrand D (1996) Male-killing bacteria in a fifth ladybird beetle, Coleomegille maculata (Coleoptera: Coccinellidae). Heredity 77:177–185

    Article  PubMed  Google Scholar 

  • Hurst GDD, Hammarton TC, Bandi C, Majerus TMO, Bertrand D, Majerus MEN (1997) The diversity of inherited parasites of insects: the male killing agent of the ladybird beetle Coleomegilla maculata is a member of the Flavobacteria. Genet Res 70:1–6

    Article  Google Scholar 

  • Hurst GDD, Bandi C, Sacchi L, Cochrane AG, Bertrand D, Karaca T, Majerus ME (1999a) Adonia variegata (Coleoptera:Coccinellidae) bears maternally inherited Flavobacteria that kill males only. Parasitology 118:125–134

    Article  PubMed  Google Scholar 

  • Hurst GDD, Jiggins FM, von der Schulenburg JHG (1999b) Male-killing Wolbachia in two species of insect. Proc R Soc Lond B 266:735–740

    Article  Google Scholar 

  • Hurst GDD, Schulenburg JHGVD, Majerus TMO, Bertrand D, Zacharov I, Baungaard J, Volkl W, Stouthamer R, Majerus MEN (1999c) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8:133–139

    Article  PubMed  CAS  Google Scholar 

  • Hurst GDD, Johnson AP, von der Schulenbur JHG, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156:699–709

    PubMed  CAS  Google Scholar 

  • Hurst GDD, Anbutsu H, Kutsukake M, Fukatsu T (2003a) Hidden from the host: Spiroplasma bacteria infecting Drosophila do not cause an immune response, but are suppressed by ectopic immune activation. Insect Mol Biol 12:93–97

    Article  PubMed  CAS  Google Scholar 

  • Hurst GDD, Jiggens FM, Majerus MEN (2003b) Inherited microorganisms that selectively kill male hosts: the hidden players of insect evolution. In: Bourtzis K, Milller TA (eds) Insect symbiosis. CRC, Boca Raton, pp 177–197

    Google Scholar 

  • Huszar T, Imler J-L (2008) Drosophila viruses and the study of antiviral host-defense. In: Maramorosch K, Shatkin AJ, Murphy F (eds) Advances in virus research. Academic, San Diego, pp 227–265

    Google Scholar 

  • Hypsa V, Novakova E (2009) Insect symbionts and molecular phylogenies. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Boca Raton

    Google Scholar 

  • Ikeda H (1970) The cytoplasmically inherited ‘sex-ratio’ condition in natural and experimental populations of Drosophila bifasciata. Genetics 65:311–333

    PubMed  CAS  Google Scholar 

  • Ikeya T, Broughton S, Alic N, Grandison R, Partridge L (2009) The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila. Proceedings of the Royal Society B

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Iturbe-Ormaetxe I, O’Neill SL (2007) Wolbachia-host interactions: connecting phenotype to genotype. Curr Opin Microbiol 10:221–224

    Article  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Burke GR, Riegler M, O’Neill SL (2005) Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacteriol 187:5136–5145

    Article  PubMed  CAS  Google Scholar 

  • Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3:23–25

    Article  PubMed  CAS  Google Scholar 

  • Jansson E, Blackman A, Hakkarainen K, Miettinen A (1982) Viruses of mycoplasmasand spiroplasmas. Med Biol 60:125–131

    PubMed  CAS  Google Scholar 

  • Jiggens FM, Bentley JK, Majerus MEN, Hurst GDD (2002) Recent changes in phenotype and patterns of host specialization in Wolbachia bacteria. Mol Ecol 11:1275–1283

    Article  Google Scholar 

  • Jiggins FM, Hurst GDD, Jiggens CD, Schulenburg JHGVD, Majerus MEN (2000a) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 120:439–446

    Article  PubMed  Google Scholar 

  • Jiggins FM, Hurst GDD, Majerus MEN (2000b) Sex-ratio disturbing Wolbachia causes sex-role reversal in its butterfly host. Proc Roy Soc B 267:69–73

    Article  CAS  Google Scholar 

  • Jiggins FM, Hurst GDD, Schulenburg JHGVD, Majerus MEN (2001) Two male-killing Wolbachia strains coexist within a population of the butterfly Acraea encedon. Heredity 86:161–166

    Article  PubMed  CAS  Google Scholar 

  • Junqueira VBC, Barros SBM, Chan SS, Rodrigues L, Giavarotti L, Abud RL, Deucher GP (2004) Ageing and oxidative stress. Mol Aspects Med 25:5–16

    Article  PubMed  CAS  Google Scholar 

  • Kageyama D, Anbutsu H, Watada M, Hosokawa T, Shimada M, Fukatsu T (2006) Prevalence of a non-male-killing spiroplasma in natural populations of Drosophila hydei. Appl Environ Microbiol 72:6667–6673

    Article  PubMed  CAS  Google Scholar 

  • Kamoda S, Masui S, Ishikawa H, Sasaki T (2000) Wolbachia infection and cytoplasmic incompatibility in the cricket Tetragryllus taiwanemma. J Exp Biol 203:2503–2509

    PubMed  CAS  Google Scholar 

  • Kaneko T, Silverman N (2005) Bacterial recognition and signalling by the Drosophila IMD pathway. Cell Microbiol 7:461–469

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Liu G, Lundstrom A, Gelius E, Steiner H (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci USA 95:10078–10082

    Article  PubMed  CAS  Google Scholar 

  • Kemp C, Imler J-L (2009) Antiviral immunity in drosophila. Curr Opin Immunol 21:3–9

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Fukatsu T (2003) Diversity of Wolbachia endosymbionts in heteropteran bugs. Appl Environ Microbiol 69:6082–6090

    Article  PubMed  CAS  Google Scholar 

  • Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2:256–267

    Article  PubMed  CAS  Google Scholar 

  • Kitajima EW, Groot T, Novelli VM, Freitas-Astua J, Alberti G, Moraes GJ (2007) In situ observation of the Cardinium symbionts of Brevipalpus (Acari: Tenuipalpidae) by electron microscopy. Exp Appl Acarol 42:263–271

    Article  PubMed  Google Scholar 

  • Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O'Neill SL, Thomson N et al (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 25:1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP (2009a) Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics 10:33

    Article  PubMed  CAS  Google Scholar 

  • Klasson L, Westberg J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC, Veneti Z, Chen L, Braig HR, Garrett R et al (2009b) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 106:5725–5730

    Article  PubMed  Google Scholar 

  • Kobayashi SD, Voyich JM, Burlak C, DeLeo FR (2005) Neutrophils in the innate immune response. Archivum immunologii et therapiae experimentalis 53:505–517

    CAS  Google Scholar 

  • Kohchi C, Inagawa H, Nishizawa T, Soma G (2009) ROS and innate immunity. Anticancer Res 29:817–821

    PubMed  CAS  Google Scholar 

  • Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci USA 99:14280–14285

    Article  PubMed  CAS  Google Scholar 

  • Kurtti TJ, Munderloh UG, Andreadis TG, Magnarelli LA, Mather TA (1996) Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis. J Invertebr Pathol 67:318–321

    Article  PubMed  CAS  Google Scholar 

  • Kyei-Poku GK, Colwell DD, Coghlin P, Benkel B, Floate K (2005) On the ubiquity and phylogeny of Wolbachia in lice. Mol Ecol 14:285–294

    Article  PubMed  CAS  Google Scholar 

  • Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230:243–257

    Article  PubMed  CAS  Google Scholar 

  • Laven H (1951) Crossing experiments with Culex strains. Evolution 5:370–375

    Article  Google Scholar 

  • Lawson ET, Mousseau TA, Klaper R, Hunter MD, Werren JH (2000) Rickettsia associated with male-killing in a buprestid beetle. Heredity 86:497–505

    Article  Google Scholar 

  • Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M, Georgel P, Reichhart JM, Hoffmann AA (1995) A recessive mutation, immune deficiency (imd) defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci USA 92:9465–9469

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94:14614–14619

    Article  PubMed  CAS  Google Scholar 

  • Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297:114–116

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Casiraghi M, Salati E, Bazzochi C, Bandi C (2002) How many Wolbachia supergroups exist? Mol Biol Evol 19:341–346

    PubMed  CAS  Google Scholar 

  • Lo N, Paraskevopoulos C, Bourtzis K, O'Neill SL, Werren JH, Bordenstein S, Bandi C (2007) Taxonimic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol 57:654–657

    Article  PubMed  CAS  Google Scholar 

  • Louis C, Nigro L (1989) Ultrastructural evidence of Wolbachia rickettsiales in Drosophila simulans and their relationships with unidirectional cross incompatibility. J Invertebr Pathol 54:39–44

    Article  Google Scholar 

  • Machado CX, Pinto PM, Zaha A, Ferreira HB (2009) A peroxiredoxin from Mycoplasma hyopneumoniae with a possible role in H2O2 detoxification. Microbiology 155, DOI 10.1099/mic.1090.030643-030640.

  • Mansfield BE, Dionne MS, Schneider DS, Freitag NE (2003) Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 5:901–911

    Article  PubMed  CAS  Google Scholar 

  • Masui S, Sasaki T, Ishikawa H (2000) Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. J Bacteriol 182:6529–6531

    Article  PubMed  CAS  Google Scholar 

  • Masui S, Kuroiwa H, Sasaki T, Inui M, Kuroiwa T, Ishikawa H (2001) Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun 283:1099–1104

    Article  PubMed  CAS  Google Scholar 

  • Matalon Y, Katzir N, Gottlieb Y, Portnoy V, Zchori-Fein E (2007) Cardinium in Plagiomerus diaspidis (Hymenoptera: Encyrtidae). J Invertebr Pathol 96:106–108

    Article  PubMed  CAS  Google Scholar 

  • Mateos M, Castrezna SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA (2006) Heritable endosymbionts of Drosophila. Genetics 174:363–376

    Article  PubMed  CAS  Google Scholar 

  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    Article  PubMed  CAS  Google Scholar 

  • McLeod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, Fox GE, McNeill TZ, Jiang H, Muzny D, Jacob LS et al (2004) Complete genome sequence of Rickettsia typhi and comparison with sequences of other Rickettsiae. J Bacteriol 186:5842–5855

    Article  CAS  Google Scholar 

  • Mira A, Moran N (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143

    Article  PubMed  CAS  Google Scholar 

  • Moran N (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA 104:8627–8633

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71:8802–8810

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T, Kisimoto R, Yanase T, Matsumoto Y, Kageyama D, Noda H (2009) Prevalence of Cardinium in planthoppers and spider mites and taxonomic revision of "Candidatus Cardinium hertigii" based on detection of a new Cardinium group from biting midges. Applied and Environmental Microbiology, doi:10.1128/AEM.01583-01509.

  • Nappi AJ, Vass E (1998) Hydrogen peroxide production in immune-reactive Drosophila melanogaster. J Parasitol 84:1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Nappi AJ, Vass E, Frey F, Carton Y (1995) Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol 68:450–456

    PubMed  CAS  Google Scholar 

  • Nirgianaki A, Banks GK, Frohlich DR, Veneti Z, Braig HR, Miller TA, Bedford ID, Markham PG, Savakis C, Bourtzis K (2003) Wolbachia infections of the whitefly Bemisia tabaci. Curr Microbiol 47:93–101

    Article  PubMed  CAS  Google Scholar 

  • Noel GR, Atibalentja A (2006) “Candidatus Paenicardinium endonii”, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. Int J Syst Evol Microbiol 56:1697–1702

    Article  PubMed  CAS  Google Scholar 

  • O’Neill SL, Pettigrew MM, Sinkins SP, Braig HR, Andreadis TG, Tesh RB (1997a) In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol Biol 6:33–39

    Article  PubMed  Google Scholar 

  • O’Neill SL, Werren JH, Hoffmann AA (1997b) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University, Oxford

    Google Scholar 

  • Park S-Y, Heo Y-J, Kim K-S, Cho Y-H (2005) Drosophila melanogaster is susceptible to Vibrio cholerae infection. Mol Cells 20:409–415

    PubMed  CAS  Google Scholar 

  • Parsons LM, Lin F, Orban J (2006) Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry (Mosc) 45:2122–2128

    Article  CAS  Google Scholar 

  • Penalva LO, Sanchez L (2003) RNA binding protein Sex-Lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol Mol Biol Rev 67:343–359

    Article  PubMed  CAS  Google Scholar 

  • Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc Roy Soc B 273:2097–2106

    Article  Google Scholar 

  • Perotti MA, Braig HR (2004) Endosymbionts of Acari. Phytophaga XIV:457–474

    Google Scholar 

  • Pichon S, Bouchon D, Cordaux R, Chen L, Garrett RA, Greve P (2009) Conservation of the type IV secretion system throughout Wolbachia evolution. Biochem Biophys Res Commun 385:557–562

    Article  PubMed  CAS  Google Scholar 

  • Popov VL, Han VC, Chen SM, Dumler JS, Feng HM, Andreadis TG, Tesh RB, Walker DH (1998) Ultrastructural differentiation of the genogroups in the genus Ehrlichia. J Med Microbiol 47:235–251

    Article  PubMed  CAS  Google Scholar 

  • Potts JM, Sharma R, Pasqualotto F, Nelson D, Hall G, Agarwal A (2000) Association of Ureaplasma urealyticum with abnormal reactive oxygen species levels and absence of leukocytospermia. J Urol 163:1775–1778

    Article  PubMed  CAS  Google Scholar 

  • Poulson DF, Sakaguchi B (1961) Nature of “sex ratio” agent in Drosophila. Science 133:1489–1490

    Article  PubMed  CAS  Google Scholar 

  • Provencher L, Morse GE, Weeks AR, Normark BB (2005) Parthenogenesis in the Aspidiotus nerii complex (Hemiptera: Diaspididae): a single origin of a worldwide polyphagous lineage asssociated with Cardinium bacteria. Ann Entomol Soc Am 98:629–635

    Article  Google Scholar 

  • Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH (2008) Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 63:165–183

    Article  PubMed  CAS  Google Scholar 

  • Reeves WK, Dowling APG, Dasch GA (2006) Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Exp Appl Acarol 38:181–188

    Article  PubMed  Google Scholar 

  • Regassa LB, Gasparich GE (2006) Spiroplasmas: evolutionary relationships and biodiversity. Front Biosci 11:2983–3002

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG, Chang T-S, Bae YS, Lee S-R, Kang SW (2003) Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 14:S211–S215

    Article  PubMed  CAS  Google Scholar 

  • Rikihisa Y (2006) Ehrlichia subversion of host innate responses. Curr Opin Microbiol 9:95–101

    Article  PubMed  CAS  Google Scholar 

  • Roberts LW, Rapmund G, Gadigan FG (1977) Sex ratios in Rickettsia Tsutsugamushi-infected and noninfected colonies of Leptotrombidium (Acari: Trombiculidae). J Med Entomol 14:89–92

    PubMed  CAS  Google Scholar 

  • Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microb Infect 5:1307–1315

    Article  CAS  Google Scholar 

  • Ros VID, Breeuwer JAJ (2009) The effects of, and interactions between, Cardinium and Wolbachia in the doubly infected spider mite Bryobia sarothamni. Heredity 102:413–420

    Article  PubMed  CAS  Google Scholar 

  • Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ (2009) How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl Environ Microbiol 75:1036–1043

    Article  PubMed  CAS  Google Scholar 

  • Roth O, Kurtz J (2009) Phagocytosis mediates specificity in the immune defence of an invertebrate, the woodlouse Porcellio scaber (Crustacea: Isopoda). Dev Comp Immunol 33:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Rudakov NV, Shypnov SN, Samoilenko IE, Tankibaev MA (2003) Ecology and epidemiology of spotted fever group Rickettsiae and new data from their study in Russia and Kazakhstan. Ann NY Acad Sci 990:12–24

    Article  PubMed  CAS  Google Scholar 

  • Rugendorff A, Younossi-Hartenstein A, Hartenstein V (1994) Embryonic origin and differentiation of the Drosophila heart. Roux’s Archives of Developmental Biology 203:266–280

    Article  Google Scholar 

  • Rydkina E, Sahni SK, Santucci LA, Turpin LC, Baggs RB, Silverman DJ (2004) Selective modulation of antioxidant enzyme activities in host tissues during Rickettsia conorii infection. Microb Pathog 36:293–301

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi B, Poulson DF (1963) Interspecific transfer of the “sex-ratio” condition from Drosophila willistoni to D. melanogaster. Genetics 48:841–861

    PubMed  CAS  Google Scholar 

  • Sakamoto JM, Feinstein J, Rasgon JL (2006) Wolbachia infections in the Cimicidae: museum specimens as an untapped resource for endosymbiont surveys. Appl Environ Microbiol 72:3161–3167

    Article  PubMed  CAS  Google Scholar 

  • Sanogo YO, Dobson SL (2006) WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect Biochem Mol Biol 36:80–85

    Article  PubMed  CAS  Google Scholar 

  • Santucci LA, Gutierrez PL, Silverman DJ (1992) Rickettsia rickettsii induces superoxide radical and superoxide dismutase in human endothelial cells. Infect Immun 60:5113–5118

    PubMed  CAS  Google Scholar 

  • Schmidt O (2009) Self-nonself recognition in symbiotic interactions. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Boca Raton, pp 33–56

    Google Scholar 

  • Serbus LR, Sullivan W (2007) A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog 3:e190

    Article  PubMed  CAS  Google Scholar 

  • Sexton JA, Vogel JP (2002) Type IVB secretion by intracellular pathogens. Traffic 3:178–185

    Article  PubMed  CAS  Google Scholar 

  • Sheeley SL, McAllister BF (2009) Mobile male-killer: similar Wolbachia strains kill males of divergent Drosophila hosts. Heredity 102:286–292

    Article  PubMed  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa Y (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  PubMed  CAS  Google Scholar 

  • Sinkins SP, Walker T, Lynd AR, Steven AR, Makepeace BL, Godfray HCJ, Parkhill J (2005) Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 436:257–260

    Article  PubMed  CAS  Google Scholar 

  • Slepneva IA, Glupov VV, Sergeeva SV, Khramtsov VV (1999) EPR detection of reactive oxygen species in hemolymph of Galleria mellonella and Dendrolimus superans sibiricus (lepodoptera) larvae. Biochem Biophys Res Commun 264:212–215

    Article  PubMed  CAS  Google Scholar 

  • Slupphaug G, Kavli B, Krokan HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    PubMed  CAS  Google Scholar 

  • Somerson NL, Walls BE, Chanock RM (1965) Hemolysin of Mycoplasma pneumonia: tentative identification as a peroxide. Science 150:226–228

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino RP, Carton Y, Govind S (2002) Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev Biol 243:65–80

    Article  PubMed  CAS  Google Scholar 

  • Steiner J, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer R, Breeuwer J, Hurst G (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

    Article  PubMed  CAS  Google Scholar 

  • Sun G, Xu X, Wang Y, Shen X, Chen Z, Yang J (2008) Mycoplasma pneumoniae infection induces reactive oxygen species and DNA damage in A549 human lung carcinoma cells. Infect Immun 76:4405–4413

    Article  PubMed  CAS  Google Scholar 

  • Tarshis M, Yavlovich A, Katzenell A, Ginsburg I, Rottem S (2004) Intracellular location and survival of Mycoplasma penetrans within HeLa cells. Curr Microbiol 49:136–140

    Article  PubMed  CAS  Google Scholar 

  • Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biology 6

  • Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–1837

    PubMed  CAS  Google Scholar 

  • Thao ML, Baumann L (2004) Evidence for multiple acquisition of Arsenophonus by Whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol 48:140–144

    Article  PubMed  CAS  Google Scholar 

  • Theopold U, Schmidt O, Soderhall K, Dushay MS (2004) Coagulation in arthropods:defence, wound closure and healing. Trends Immunol 25:289–294

    Article  PubMed  CAS  Google Scholar 

  • Thomas JP, Maiorino M, Ursini F, Girotti AW (1990) Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. J Biol Chem 265:454–461

    PubMed  CAS  Google Scholar 

  • Tinsley MC, Majerus MEN (2006) A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology 132:757–765

    Article  PubMed  CAS  Google Scholar 

  • Tram U, Ferree PM, Sullivan W (2003) Identification of Wolbachia-host interacting factors through cytological analysis. Microbes Infect 5:999–1011

    Article  PubMed  CAS  Google Scholar 

  • Trpis M, Perrone JB, Reissig M, Parker KL (1981) Control of cytoplasmic incompatibilty in the Aedes scutellaris complex. J Hered 72:313–317

    Google Scholar 

  • Tully JG, Rose DL, Yunker CE, Carle P, Bove JM, Williamson DL, Whitcomb RF (1995) Spiroplasma ixodetis sp. nov., a new species from Ixodes pacificus ticks collected in oregon. Int J Syst Bacteriol 45:23–28

    Article  PubMed  CAS  Google Scholar 

  • van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernandez JM, Jimenez L, Postigo M, Silva FJ et al (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586

    Article  PubMed  CAS  Google Scholar 

  • van Kuijk FJGM, Sevanian A, Handelman GJ, Dratz EA (1987) A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends Biochem Sci 12:31–34

    Article  Google Scholar 

  • Vandekerckhove TTM, Watteyne S, Willems A, Swings JG, Mertens J, Gillis M (1999) Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy. FEMS Microbiol Lett 180:279–286

    PubMed  CAS  Google Scholar 

  • Vavre F, Fleury F, Lepetit D, Fouillet P, Bouletreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol 16:1711–1723

    PubMed  CAS  Google Scholar 

  • Veneti Z, Clark ME, Zabalou S, Karr TL, Savakis C, Bourtzis K (2003) Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164:545–552

    PubMed  Google Scholar 

  • Veneti Z, Bentley JK, Koana T, Braig HR, Hurst GDD (2005) A functional dosage compensation complex required for male-killing in Drosophila. Science 307:1461–1463

    Article  PubMed  CAS  Google Scholar 

  • Verleyen P, Baggerman G, D’Hertog W, Vierstraete E, Husson SJ, Schoofs L (2006) Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS. J Insect Physiol 52:379–388

    Article  PubMed  CAS  Google Scholar 

  • Voth DE, Howe D, Beare PA, Vogel JP, Unsworth N, Samuel JE, Heinzen RA (2009) The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-Terminal truncations that influence Dot/Icm mediated secretion. J Bacteriol 191:4232–4242

    Article  PubMed  CAS  Google Scholar 

  • Watts T, Haselkorn TS, Moran N, Markow TA (2009) Variable incidence of Spiroplasma infections in natural populations of Drosophila species. PLoS ONE 4:e5703

    Article  PubMed  CAS  Google Scholar 

  • Weeks AR, Breeuwer JAJ (2003) A new bacterium from the Cytophaga-Flavobacterium-Bacteroides phylum that causes sex ratio distortion. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Boca Raton, pp 165–176

    Google Scholar 

  • Weeks AR, Stouthamer R (2004) Increased fecundity associated with infection by a Cytophaga-like intracellular bacterium in the predatory mite, Metaseiulus occidentalis. Proc Roy Soc B 271:S193–S195

    Article  Google Scholar 

  • Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482

    Article  PubMed  CAS  Google Scholar 

  • Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc Lond B 270:1857–1865

    Article  Google Scholar 

  • Weinert LA, Tinsley MC, Temperley M, Jiggens FM (2007) Are we underestimating the diversity and incidence of insect bacterial symbionts? A case study in ladybird beetles. Biol Lett 3:678–681

    Article  PubMed  Google Scholar 

  • Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 97:13772–13777

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Roy Soc B 267:1277–1285

    Article  CAS  Google Scholar 

  • Werren JH, Skinner SW, Huger AM (1986) Male-killing bacteria in a parasitic wasp. Science 231:990

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Hurst DD, Zhang W, Breeuwer JAJ, Stouthamer R, Majerus ME (1994) Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 176:388–394

    PubMed  CAS  Google Scholar 

  • Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Roy Soc B 261:53–63

    Article  Google Scholar 

  • Whitten MMA, Ratcliffe NA (1999) In vitro superoxide activity in the haemolymph of the west indian leaf cockroach, Blaberus discoidalis. J Insect Physiol 45:667–675

    Article  PubMed  CAS  Google Scholar 

  • Williamson DL, Sakaguchi B, Hackett KJ, Whitcomb RF, Tully JG, Carle P, Bove JM, Adams JR, Konai M, Henegar RB (1999) Spiroplasma poulsonii sp nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly. Int J Syst Bacteriol 49:611–618

    Article  PubMed  Google Scholar 

  • Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30

  • Wolf KW, Glatzel S (1996) Intracytoplasmic bacteria in male germ cells of Philudoria potatoria L. (Lasiocampidae, Lepidoptera, Insecta). J Invertebr Pathol 67:279–288

    Article  PubMed  Google Scholar 

  • Woolfit M, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol Biol Evol 26:367–374

    Article  PubMed  CAS  Google Scholar 

  • Wright JD, Barr AR (1980) The ultrastructure and symbiotic relationships of Wolbachia of mosquitoes of the Aedes scutellaris group. J Ultrastruct Res 72:52–64

    Article  PubMed  CAS  Google Scholar 

  • Wright JD, Sjostrand FS, Portaro JK, Barr RA (1978) The ultrastructure of the rickettsia-like microorganism Wolbachia pipientis and associated virus-like bodies in the mosquito Culex pipiens. J Ultrastruct Res 63:79–85

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:0327–0341

    Article  CAS  Google Scholar 

  • Xi Z, Gavotte L, Xie Y, Dobson SL (2008) Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9, doi:10.1186/1471-2164-1189-1181.

  • Yavlovich A, Kohen R, Ginsburg I, Rottem S (2006) The reducing antioxidant capacity of Mycoplasma fermentans. FEMS Microbiol Lett 259:195–200

    Article  PubMed  CAS  Google Scholar 

  • Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens. Nature 232:657–658

    Article  PubMed  CAS  Google Scholar 

  • Yen JH, Barr AR (1973) The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol 22:242–250

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Kinoshita K, Ashida M (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 271:13854–13860

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behaviour in parasitoid wasps. Proc Natl Acad Sci USA 98:1255–1260

    Article  Google Scholar 

  • Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS (2004) Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of Candidatus Cardinium hertigii. Int J Syst Evol Microbiol 54:961–968

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jennifer Biliske and Philip Batista for helpful comments and suggestions in the preparation of this manuscript.

Funding

NSERC Discovery Grant to H.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harriet L. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, H.L., Brennan, L.J., Keddie, B.A. et al. Bacterial symbionts in insects: balancing life and death. Symbiosis 51, 37–53 (2010). https://doi.org/10.1007/s13199-010-0065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0065-3

Keywords

Navigation