Skip to main content
Log in

Microbial Symbionts of Insects: Genetic Organization, Adaptive Role, and Evolution

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The microorganisms forming symbioses with insects play an important role in nutrition, development and evolution of their hosts. They make it possible for their hosts to use poorly digestible nutrients, to resist the biotic and abiotic stresses, and to regulate the metamorphosis. The microsymbionts of insects may be facultative (genetically specialized for symbiosis but retaining the capacity for autonomous existence; they are usually located extracellularly, in the gut, hemolymph, or salivary glands of the host) or obligatory (incapable of autonomous existence due to the loss of large parts of their genomes; they are usually located inside specialized host cells). The intracellular symbionts (endocytobionts) are capable of vertical transmission during the host reproduction, which determines the loss of many housekeeping genes, including the genes for replication, transcription and translation. In some obligatory symbionts, amplification of genes performing the functions useful for the hosts, such as the synthesis of essential amino acids, was found. These symbionts exhibit increased rates of accumulation of mutations, including non-synonymous nucleotide substitutions, reflecting suppression of the purifying selection and activation of genetic drift stimulating the genome reduction. Transfer of some genes from endocytobionts to the nuclear chromosomes of insects enables them to implement the novel metabolic functions, including assimilation of rare nutrients. The obligatory intracellular insect symbionts may be used as models to reconstruct the early stages of evolution of cellular organelles, which involve reduction of essential genes and the loss of genetic individuality of the symbionts, i.e., the ability for self-maintenance and expression of their residual genomes. Genetic analysis of insect microsymbionts extends the opportunities for their practical application associated with biological control of harmful insects (herbivorous, bloodsucking) and stimulation of the beneficial ones (honey collectors, pollinators, antagonists of pests).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuña, R., Padilla, B.E., Flórez-Ramos, C.P., Rubio, J.D., Herrera, J.C., Benavides, P., Lee, S.-J., Yeats, T.H., Egan, A.N., Doyle, J.J., and Rose, J.K.C., Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 4197–4202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Afrikyan, E.K., Kinosyan, M.A., Okasov, A.K., and Kazanchyan, N.L., Specifics of the insect enthomopathogenic microbiota, Dokl. NAS of Armenia, 2014, vol. 114, no. 2, pp. 156–163.

    Google Scholar 

  • Andongma, A.A., Wan, L., Dong, Y.C., Li, P., Desneux, N., White, J.A., and Niu, C.-Y., Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis, Sci. Rep., 2015, vol. 5, no. 9470. doi 10.1038/srep09470

    Google Scholar 

  • Baba, T., Ara, T., Okumura, Y., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., and Mori, H., Construction of Escherichia coli K-12 in-frame, single-gene knock-out mutants—the Keio collection, Mol. Syst. Biol., 2006, vol. 2, no. 1. doi 10.1038/msb4100050

    Google Scholar 

  • Bodył, A., Mackiewicz, P., and Gagat, P., Organelle evolution: Paulinella breaks a paradigm, Curr. Biol., 2012, vol. 22, pp. 304–305.

    Article  Google Scholar 

  • Brewin, N.J., Plant cell wall remodeling in the Rhizobiumlegume symbiosis, Crit. Rev. Plant Sci., 2004, vol. 23, pp. 1–24.

    Article  Google Scholar 

  • Broderick, N.A. and Lemaitre, B., Gut-associated microbes of Drosophila melanogaster, Gut Microbes., 2012, vol. 3, pp. 307–321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broderick, N.A., Raffa, K.F., and Handelsman, J., Midgut bacteria required for Bacillus thuringiensis insecticidal activity, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 15196–15199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldera, E.J., Poulsen, M., Suen, G., and Currie, C.R., Insect symbioses: a case study of past, present, and future of fungus-growing ant research, Environ. Entomol., 2009, vol. 38, pp. 78–92.

    Article  PubMed  Google Scholar 

  • Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A., and Girolami, V., ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin), Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1641–1647.

    Article  CAS  PubMed  Google Scholar 

  • Charles, H., Balmand, S., Lamelas, A., Cottret, L., Pérez-Brocal, V., Burdin, B., Latorre, A., Febvay, G., Colella, S., Calevro, F., and Rahbé, Y., A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: reduced transporter sets and variable membrane organizations, PLoS One, 2011, vol. 6. e29096. doi 10.1371/journal.pone.0029096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, B.W., Phillips, T.A., and Coats, J.R., Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review, J. Agric. Food Chem., 2005, vol. 53, pp. 4643–4653.

    Article  CAS  PubMed  Google Scholar 

  • Cordaux, R., Bouchon, D., and Grève, P., The impact of endosymbionts on the evolution of host sex-determination mechanisms, Trends Genet., 2011, vol. 27, pp. 332–341.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, A.E., Lessons from studying insect symbioses, Cell Host and Microbe, 2011, vol. 10, pp. 359–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas, A.E., The molecular basis of bacterial–insect symbiosis, J. Mol. Biol., 2014, vol. 426, pp. 3830–3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowd, P.F., Insect fungal symbionts: a promising source of detoxifying enzymes, J. Industr. Microbiol., 1992, vol. 9, pp. 149–161.

    Article  CAS  Google Scholar 

  • Felsenstein, J., The evolutionary advantage of recombination, Genetics, 1974, vol. 78, pp. 737–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, J., Ganatra, M., Kamal, I., Ware, J., Makarova, K., Ivanova, N., Bhattacharyya, A., Kapatral, V., Kumar, S., Posfai, J., Vincze, T., Ingram, J., Moran, L., Lapidus, A., Omelchenko, M., et al., The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode, PLoS Biol., 2005, vol. 3, no. 4. e121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil, R., Sabater-Munoz, B., Latorre, A., Silva, F.J., and Moya, A., Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 4454–4458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, J.M., Brown, B.J., and Carlton, B.C., Transfer of Bacillus thuringiensis plasmids coding for delta endotoxin among strains of B. thuringiensis and B. cereus, Proc. Natl. Acad. Sci. U. S. A., 1982, vol. 79, pp. 6951–6955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosalbes, M.J., Lamelas, A., Moya, A., and Latorre, A., The striking case of tryptophan provision in the cedar aphid Cinara cedri, J. Bacteriol., 2008, vol. 190, pp. 6026–6029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross, J. and Bhattacharya, D., Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective, Nat. Rev. Genet., 2009, vol. 10, pp. 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Gunduz E.A., Douglas A.E. Symbiotic bacteria enable insect to use a nutritionally inadequate diet, Proc. R. Soc. B. 2009, vol. 276, pp. 987–991.

    Article  CAS  Google Scholar 

  • Gupta, A.K., Nayduch, D., Verma, P., Shah, B., Ghate, H.V., Patole, M.S., and Shouche, Y.S., Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.), FEMS Microbiol. Ecol., 2012, vol. 79, pp. 581–593.

    Article  CAS  PubMed  Google Scholar 

  • Hackstein, J.H.P., van Hoek, A.H.A.M., Leunissen, J.A.M., and Huynen, M., Anaerobic ciliates and their methanogenic endosymbionts, in Symbiosis: Mechanisms and Model Systems, Seckbach, J., Ed., Dordrecht: Kluwer Acad. Publ., 2002, pp. 257–270.

    Google Scholar 

  • Hotopp, D.J.C., Clark, M.E., Oliveira, D.C., Foster, J.M., Fischer, P., Muñoz Torres, M.C., Giebel, J.D., Kumar, N., Ishmael, N., Wang, S., Ingram, J., Nene, R.V., Shepard, J., Tomkins, J., Richards, S., et al., Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes, Science, 2007, vol. 317, pp. 1753–1756.

    Article  Google Scholar 

  • Husnik, F., Nikoh, N., Koga, R., Ross, L., Duncan, R.P., Fujie, M., Tanaka, M., Satoh, N., Bachtrog, D., Wilson, A.C., von Dohlen, C.D., Fukatsu, T., and McCutcheon, J.P., Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis, Cell, 2013, vol. 153, pp. 1567–1578.

    CAS  Google Scholar 

  • Janson, E.M., Stireman, J.O., Singer, M.S., and Abbot, P., Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification, Evolution, 2008, vol. 62, pp. 997–1012.

    Article  PubMed  Google Scholar 

  • Kandybin, N.V., Patyka, T.I., Ermolova, V.P., and Patyka, V.F., Mikrobiokontrol’ chislennosti nasekomykh i ego dominanta Bacillus thuringiensis (Microbiocontrol of Insect Abundance and Its Dominant, Bacillus thuringiensis), S.-Pb., Pushkin: Inform. Center Plant Protection, 2009.

    Google Scholar 

  • Keeling, P.J., Jeffrey, D. and Palmer, J.D., Horizontal gene transfer in eukaryotic evolution, Nature Rev. Genet., 2008, vol. 9, pp. 605–618.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, Y., Hosokawa, T., and Fukatsu, T., Insectmicrobe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation, Appl. Environ. Microbiol., 2007, vol. 73, pp. 4308–4316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.K., Son, W.D., Kim, C.-H., Cho, J.H., Marchetti, R., Silipo, A., Sturiale, L., Park, H.Y., Huh, Y.R., Nakayama, H., Fukatsu, T., Molinaro, A., and Lee, B.L., Insect gut symbiont’s susceptibility to host antimicrobial peptides caused by alteration of bacterial cell envelope, J. Biol. Chem., 2015, vol. 290, pp. 21042–21053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga, R., Tsuchida, T., and Fukatsu, T., Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid, Proc. Roy. Soc. Lond. B, 2003, vol. 270, pp. 2543–2550.

    Article  Google Scholar 

  • Latorre, A., Gill, R., Silva, F.J., and Moya, A., Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola, Heredity, 2005, vol. 95, pp. 339–347.

    Article  CAS  PubMed  Google Scholar 

  • Lilburn, T.G., Kim, K.S., Ostrom, N.E., Byzek, K.R., Leadbetter, J.R., and Breznak, J.A., Nitrogen fixation by symbiotic and free-living spirochetes, Science, 2001, vol. 292, pp. 2495–2498.

    Article  CAS  PubMed  Google Scholar 

  • Lithgow, T. and Schneider, A., Evolution of macromolecular import pathways in mitochondria, hy-drogenosomes and mitosomes, Phil. Trans. R. Soc. B, 2010, vol. 365, pp. 799–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Huang, X., Zhang, R., Jiang, L., and Qiao, G., Phylogenetic congruence between Mollitrichosiphum (Aphididae: Greenideinae) and Buchnera indicates insect-bacteria parallel evolution, Syst. Entomol., 2013, vol. 38, pp. 81–92.

    Article  Google Scholar 

  • Luan, J.-B., Chen, W., Hasegawa, D.K., Simmons, A.M., Wintermantel, W.M., Ling, K.-S., Fei, Z., Liu, S.-S., and Douglas, A.E., Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects, Genome Biol. Evol., 2015, vol. 7, pp. 2635–2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzano-Marín, A. and Latorre, A., The genome of Serratia symbiotica from the aphid Cinara tujafilina zooms in on the process of accommodation to a cooperative intracellular life, Genome Biol. Evol., 2014, vol. 6, pp. 1683–1698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehdiabadi, N.J. and Schultz, T.R., Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini), Myrmecol. News, 2009, vol. 13, pp. 37–55.

    Google Scholar 

  • Minard, G., Mavingui, P., and Moro, C.V., Diversity and function of bacterial microbiota in the mosquito holobiont, Parasites and Vectors, 2013, vol. 6, no. 146. doi 10.1186/1756-3305-6-146

    Google Scholar 

  • Moran, N.A., Accelerated evolution and Muller’s ratchet endosymbiotic bacteria, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 2873–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, N.A., Degnan, P.H., Santos, S.R., Dunbar, H.E., and Ochman, H., The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 16919–16926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, N.A., McCutcheon, J.P., and Nakabachi, A., Genomics and evolution of heritable bacterial symbionts, Annu. Rev. Genet., 2008, vol. 42, pp. 165–190.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, U.G., Gerardo, N.M., Aanen, D.K., Six, D.L., and Schultz, T.R., The evolution of agriculture in insects, Annu. Rev. Ecol. Evol. System., 2005, vol. 36, pp. 563–595.

    Article  Google Scholar 

  • Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H.E., Moran, N.A., and Hattori, M., The 160-kilobase genome of the bacterial endosymbiont Carsonella, Science, 2006, vol. 314, pp. 267–270.

    Article  CAS  PubMed  Google Scholar 

  • Nikoh, N., Hosokawa, T., and Moriyama, M., Evolutionary origin of insect-Wolbachia nutritional mutualism, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 10257–10262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikoh, N., Hosokawa, T., Oshima, K., Hattori, M., and Fukatsu, T., Reductive evolution of bacterial genome in insect gut environment, Genome Biol. Evol., 2011, vol. 3, pp. 702–714. doi 10.1093/gbe/evr064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikoh, N., McCutcheon, J.P., Kudo, T., Miyagishima, S., and Moran, N.A., Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host, PLoS Genet., 2010, vol. 6, no. 2. e1000827. doi 10.1371/journal.pgen.1000827

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikoh, N., Tanaka, K., Shibata, F., Kondo, N., Hizume,M., Shimada, M., and Fukatsu, T., Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes, Genome Res., 2008, vol. 18, pp. 272–280.

    CAS  Google Scholar 

  • Ohkuma, M., Maeda, Y., Johjima, T., and Kudo, T., Lignin degradation and roles of white rot fungi: study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation, RIKEN Rev., 2001, no. 42, pp. 39–42.

    CAS  Google Scholar 

  • Poulsen, M., Cafaro, M.J., Erhardt, D.P., Little, A.E.F., Gerardo, N.M., Tebbets, B., Klein, B.S., and Currie, C.R., Variation in Pseudonocardia antibiotic defense helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants, Environ. Microbiol. Rep., 2010, vol. 2, pp. 534–540.

    Article  CAS  PubMed  Google Scholar 

  • Prado, S.S. and Almeida, R.P.P., Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica, Entomol. Exper. Applic., 2009, vol. 132, pp. 21–29.

    Article  Google Scholar 

  • Provorov, N.A. and Vorobyev, N.I., Evolution of host-beneficial traits in nitrogen-fixing bacteria: modeling and construction of systems for interspecies altruism, Appl. Biochem. Microbiol., 2015, vol. 51, no. 4, pp. 381–387.

    Article  CAS  Google Scholar 

  • Ricci, I., Valzano, M., Ulissi, U., Epis, S., Cappelli, A., and Favia, G., Symbiotic control of mosquito borne disease, Pathogens Global Health, 2012, vol. 106, pp. 380–385.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards, A.M., Von Dwingelo, J.E., Price, C.T., and Kwaik, Y.A., Cellular microbiology and molecular ecology of Legionella–amoeba interaction, Virulence, 2013, vol. 4, pp. 307–314.

    Google Scholar 

  • Rio, R.V.M., Symula, R.E., Wang, J., Lohs, C., Wu, Y., Snyder, A.K., Bjornson, R.D., Oshima, K., Biehl, B.S., Perna, N.T., Hattori, M., and Akso, S., Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: Glossinidae) obligate symbiont Wigglesworthia, MBio, 2012, vol. 3, no. 1. e00240–11. doi 10.1128/mBio.00240-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Contreras, M. and Vlasido, I., The diversity of insect-bacteria interactions and its applications for disease control, Biotechnol. Gen. Engin. Rev., 2008, vol. 25, pp. 203–244.

    Article  Google Scholar 

  • Sorokan’, A.V., Rumyantsev, S.D., Ben’kovskaya, G.V., and Maksimov, I.V., Ecological role of microsymbionts in the interactions of plants and phytophagous insects, Usp. Sovr. Biol., 2017, vol. 134, no. 5, pp. 135–150.

    Google Scholar 

  • Steinhaus, E.A., Insect Microbiology, Ithaca: Comstock, 1947.

    Google Scholar 

  • Suh, S.-O., Noda, H., and Blackwell, M., Insect symbiosis: derivation of yeast-like endosymbionts within en entomopathogenic filamentous lineage, Mol. Biol. Evol., 2001, vol. 18, pp. 995–1000.

    Article  CAS  PubMed  Google Scholar 

  • Tikhonovich, I.A. and Provorov, N.A., Development of symbiogenetic approaches for studying variation and heredity of superspecies systems, Russ. J. Genet., 2012, vol. 48, pp. 357–368.

    Article  CAS  Google Scholar 

  • van der Vlugt-Bergmans, C.J.B. and van der Werf, M.J., Genetic and biochemical characterization of a novel monoterpene ε-lactone hydrolase from Rhodococcus erythropolis DCL14, Appl. Environ. Microbiol., 2001, vol. 67, pp. 733–741.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Ham, R.C., Kamerbeek, J., Palacios, C., Rausell, C., Abascal, F., Bastolla, U., Fernandez, J.M., Jimenez, L., Postigo, M., Silva, F.J., Tamames, J., Viguera, E., Latorre, A., Valencia, A., Moran, F., and Moya, A., Reductive genome evolution in Buchnera aphidicola, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 581–586.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Ham, R.C., Martinez-Torres, D., Moya, A., and Latorre, A., Plasmid-encoded anthranilate synthase (TrpEG) in Buchnera aphidicola from aphids of the family Pemphigidae, Appl. Environ. Microbiol., 1999, vol. 65, pp. 117–125.

    PubMed  PubMed Central  Google Scholar 

  • van Hoek, A.H.A.M., Akhmanova, A.S., Huynen, M.A., and Hackstein, J.H.P., A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis, Mol. Biol. Evol., 2000, vol. 17, pp. 202–206.

    Article  PubMed  Google Scholar 

  • van Hoek, A.H.A.M., van Alen, T.A., Sprakel, V.S.A., Leunissen, J.A.M., Brigge, T., Vogels, G.D., and Hackstein, J.H.P., Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates, Mol. Biol. Evol., 2000, vol. 17, pp. 251–258.

    Article  PubMed  Google Scholar 

  • Vasquez, A., Forsgren, E., Fries, I., Paxton, R.J., Flaberg, E., Szekely, L., and Olofsson, T.C., Symbionts as major modulators of insect health: lactic acid bacteria and honeybees, PLoS One, 2012, vol. 7, no. 3. e33188. doi 10.1371/journal.pone.0033188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viñuelas, J., Febvay, G., Duport, G., Colella, S., Fayard, J.-M., Charles, H., Rahbé, Y., and Calevro, F., Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum, Mol. Microbiol., 2011, vol. 81, pp. 1271–1285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wernegreen, J.J. and Moran, N.A., Evidence for genetic drift in endosymbionts (Buchnera): analyses of proteincoding genes, Mol. Biol. Evol., 1999, vol. 16, pp. 83–97.

    Article  CAS  PubMed  Google Scholar 

  • Woolfit, M., Iturbe-Ormaetxe, I., McGraw, E.A., and O’Neill, S.L., An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis, Mol. Biol. Evol., 2009, vol. 26, pp. 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Zakharov, I.A., Intracellular symbionts as a factor in insect evolution, Usp. Sovr. Biol., 2014, vol. 134, no. 5, pp. 435–446.

    Google Scholar 

  • Zilber-Rosenberg, I. and Rosenberg, E., Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev., 2008, vol. 32, pp. 723–735.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © N.A. Provorov, O.P. Onishchuk, 2018, published in Mikrobiologiya, 2018, Vol. 87, No. 2, pp. 99–113.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provorov, N.A., Onishchuk, O.P. Microbial Symbionts of Insects: Genetic Organization, Adaptive Role, and Evolution. Microbiology 87, 151–163 (2018). https://doi.org/10.1134/S002626171802011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171802011X

Keywords

Navigation