Skip to main content
Log in

Numerical simulation and study on heat and mass transfer in a hybrid ultrasound/convective dryer

  • ORIGINAL ARTICLE
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Susceptibility of airborne ultrasonic power to augment heat and mass transfer during hot air dehydration of peppermint leaves was investigated in the present study. To predict the moisture removal curves, a unique non-equilibrium mathematical model was developed. For the samples dried at temperatures of 40‒70 °C and the power intensities of 0‒104 kW m−3, the diffusion of moisture inside the leaves and coefficients for of mass and heat transfer varied from 0.601 × 10–4 to 5.937 × 10–4 s−1, 4.693 × 10–4 to 7.975 × 10–4 m s−1 and 49.2 to 78.1 W m−2 K−1, respectively. In general, at the process temperatures up to 60 °C, all the studied transfer parameters were augmented in the presence of ultrasonic power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be available in request.

Code availability

Not applicable.

Abbreviations

A:

Leaf area (m2)

a:

Equation parameter

aw :

Water activity

b:

Equation parameter

Cp,da :

Specific heat of dry air (J kg1 K1)

Cp,ds :

Specific heat of dry solid (J kg1 K1)

Cp,v :

Specific heat of water vapor (J kg1 K1)

Cp,w :

Specific heat of water (J kg1 K1)

D:

Effective moisture diffusion in leaf (m2 s1)

DAB :

Water diffusivity in air (m2 s1)

Dp :

Bed diameter (m)

h:

Heat transfer coefficient (J m2 K s1)

hmv :

Mass transfer coefficient (m s1)

k:

Thermal conductivity of leaf (W m1 K1)

ka :

Thermal conductivity of air (W m1 K1)

L:

Half thickness of leaf (m)

Lc :

Thickness of bed (m)

ma :

Mass flow rate of dry air (kg s1)

mds :

Mass of dry leaf (kg)

mw :

Mass flow rate of moisture (kg m3)

q:

Conduction heat flux (kJ s1 m2)

Qs :

Sorption heat (kJ kmol1)

t:

Time (s)

Ta :

Air temperature (K)

Ta,ex :

Air temperature at bed outlet (K)

Ta,in :

Air temperature at bed inlet (K)

Ts :

Leaf temperature (K)

V:

Bed volume (m3)

Va :

Air velocity (m s1)

x:

Coordinate (m)

Xa :

Moisture content of outlet air (d.b.)

Xe :

Moisture content of inlet hot air (d.b.)

Z:

Dimensionless coordinate

ɛ:

Bed porosity (−)

μa :

Air viscosity (kg m1 s1)

ρda :

Dry air density (kg m3)

ρds :

Dry solid density (kg m3)

τ:

Moisture content of leaf (d.b.)

\(\overline{\tau }\) :

Average moisture content of leaf (d.b.)

References

  • Altay K, Hayaloglu AA, Dirim SN (2019) Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat Mass Transf 55:2173–2184

    Article  CAS  Google Scholar 

  • Arif Khan M, Moradipour M, Obeidullah Md, Abdul Quader AKM (2021) Heat and mass transfer analysis of the drying of freshwater fishes by a forced convective air-dryer. J Food Process Eng. https://doi.org/10.1111/jfpe.13574

    Article  Google Scholar 

  • Beigi M (2018) Effect of Infrared drying power on dehydration characteristic, energy consumption, and quality attributes of common wormwood (Artemisia absinthium L.) leaves. J Agric Sci Technol 20:709–718

    Google Scholar 

  • Beigi M (2019) Drying of mint leaves: Influence of the process temperature on dehydration parameters, quality attributes, and energy consumption. J Agric Sci Technol 21:77–88

    Google Scholar 

  • Botheju WS, Amarathunge KSP, Abeysinghe ISB (2011) Thin layer characteristics of fresh tea leaves. J Nat Sci Found Sri Lanka 39:61–67

    Article  Google Scholar 

  • Chen ZG, Guo XY, Wu T (2016) A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrason Sonochem 30:28–34

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Venkitasamy C, Zhang W, Khir R, Upadhyaya S, Pan Z (2020) Effective moisture diffusivity and drying simulation of walnuts under hot air. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119283

    Article  Google Scholar 

  • Cuevas M, Martínez-Cartas ML, Pérez-Villarejo L, Hernández L, García-Martín JF, Sánchez S (2019) Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renew Energy 132:911–920

    Article  Google Scholar 

  • Darvishi H, farhudi, Z., Behroozi-Khazaei, N. (2017) Mass transfer parameters and modeling of hot air drying kinetics of dill leaves. Chem Prod Process Model. https://doi.org/10.1515/cppm-2015-0079

    Article  Google Scholar 

  • Ekka JP, Palanisamy M (2020) Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Thermal Sci Eng Progr. https://doi.org/10.1016/j.tsep.2020.100607

    Article  Google Scholar 

  • Gamboa-Santos J, Montilla A, Cárcel JA, Villamiel M, Garcia-Perez JV (2014) Air-borne ultrasound application in the convective drying of strawberry. J Food Eng 128:132–139

    Article  Google Scholar 

  • Ghanbarian D, Torki-Harchegani M, Sadeghi M, Ghasemi Pirbalouti A (2020) Ultrasonically improved convective drying of peppermint leaves: influence on the process time and energetic indices. Renew Energy 153:67–73

    Article  Google Scholar 

  • Jayapragasam P, Le Bideau P, Loulou T (2021) Selection of better mathematical model describing cake baking for inverse analysis. Food Bioprod Process 126:265–281

    Article  Google Scholar 

  • Liu Y, Zeng Y, Wang Q, Sun C, Xi H (2019) Drying characteristics, microstructure, glass transition temperature, and quality of ultrasound-strengthened hot air drying on pear slices. J Food Process Preserv. https://doi.org/10.1111/jfpp.13899

    Article  Google Scholar 

  • Naghavi Z, Moheb A, Ziaei-rad S (2010) Numerical simulation of rough rice drying in a deep-bed dryer using non-equilibrium model. Energy Convers Manage 51:258–264

    Article  Google Scholar 

  • Ndukwu MC, Dirioha C, Abam FI, Ihediwa VE (2017) Heat and mass transfer parameters in the drying of cocoyam slice. Case Stud Thermal Eng 9:62–71

    Article  Google Scholar 

  • Rodríguez J, Mulet A, Bon J (2014) Influence of high-intensity ultrasound on drying kinetics in fixed beds of high porosity. J Food Eng 127:93–102

    Article  Google Scholar 

  • Sitompul JP, Widiasa Istadi IN (2001) Modeling and simulation of deep-bed grain dryers. Dry Technol 19:269–280

    Article  CAS  Google Scholar 

  • Tao Y, Zhang J, Jiang S, Xu Y, Show P-L, Han Y, Ye X, Ye M (2018) Contacting ultrasound enhanced hot-air convective drying of garlic slices: mass transfer modeling and quality evaluation. J Food Eng 235:79–88

    Article  Google Scholar 

  • Tao Y, Li D, Chai WS, Show PL, Yang X, Manickam S, Xie G, Han Y (2021) Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: heat and mass transfer simulation, energy consumption and quality evaluation. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2020.105410

    Article  PubMed  PubMed Central  Google Scholar 

  • Tohidi M, Sadeghi M, Torki-Harchegani M (2017) Energy and quality aspects for fixed deep bed drying of paddy. Renew Sustain Energy Rev 70:519–528

    Article  Google Scholar 

  • Wang H, Torki M, Taherian A, Beigi M (2023) Analysis of exergetic performance for a combined ultrasonic power/convective hot air dryer. Sustain Renew Energy Rev. https://doi.org/10.1016/j.rser.2023.11360

    Article  Google Scholar 

  • Xi H, Liu Y, Guo L, Hu R (2020) Effect of ultrasonic power on drying process and quality properties of far-infrared radiation drying on potato slices. Food Sci Biotechnol 29:93–101

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KC: Writing—Review & Editing (Revision), MT: Conceptualization, Methodology, Data curation, Mathematical modeling, Validation, Writing original draft; DG: Conceptualization, Supervision, Review & Editing; MB: Data curation, Formal analysis, Mathematical modeling, Writing original draft; TKA: Formal analysis, Review & Editing.

Corresponding author

Correspondence to Mehdi Torki.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Torki, M., Ghanbarian, D. et al. Numerical simulation and study on heat and mass transfer in a hybrid ultrasound/convective dryer. J Food Sci Technol 61, 1094–1104 (2024). https://doi.org/10.1007/s13197-023-05912-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-023-05912-y

Keywords

Navigation