Skip to main content
Log in

Recent advances in nanomaterials integrated immunosensors for food toxin detection

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

For the management and prevention of many chronic and acute diseases, the rapid quantification of toxicity in food and feed products have become a significant concern. Technology advancements in the area of biosensors, bioelectronics, miniaturization techniques, and microfluidics have shown a significant impact than conventional methods which have given a boost to improve the sensing performance towards food analyte detection. In this article, recent literature of Aflatoxin B1 (AFB1), worldwide permissible limits, major outbreaks and severe impact on healthy life have been discussed. An improvement achieved in detection range, limit of detection, shelf-life of the biosensor by integrated dimensional nanomaterials such as zero-dimension, one-dimension and two-dimension for AFB1 detection using electrical and optical transduction mechanism has been summarized. A critical overview of the latest trends using paper-based and micro-spotted array integrated with the anisotropic shape of nanomaterials, portable microfluidic devices have also been described together with future perspectives for further advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code availability

Not applicable.

References

  • Adeyeye SAO (2016) Fungal mycotoxins in foods: a review. Cogent Food Agric 2(1):1213127

    Google Scholar 

  • Afsah-Hejri L, Jinap S, Hajeb P, Radu S, Shakibazadeh S (2013) A review on mycotoxins in food and feed: malaysia case study. Compr Rev Food Sci Food Saf 12(6):629–651

    Article  CAS  PubMed  Google Scholar 

  • Althagafi II, Ahmed SA, El-Said WA (2019) Fabrication of gold/graphene nanostructures modified ITO electrode as highly sensitive electrochemical detection of Aflatoxin B1. PLoS ONE 14(1):e0210652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aquino S, Corrêa B (2011) Aflatoxins in pet foods: a risk to special consumers. In: Aflatoxins-detection, measurements & control, pp 53–76

  • Ashraf MW, Tayyaba S, Afzulpurkar N (2011) Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int J Mol Sci 12(6):3648–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Abdallah Z, Grauby-Heywang C, Beven L, Cassagnere S, Moroté F, Maillard E, Sghaier H, Cohen Bouhacina T (2019) Development of an ultrasensitive label-free immunosensor for fungal aflatoxin B1 detection. Biochem Eng J 150:107262

    Article  CAS  Google Scholar 

  • Bhardwaj H, Singh C, Pandey MK, Sumana G (2016) Star shaped zinc sulphide quantum dots self-assembled monolayers: Preparation and applications in food toxin detection. Sens Actuators B Chem 231:624–633

    Article  CAS  Google Scholar 

  • Bhardwaj H, Singh C, Kotnala RK, Sumana G (2018) Graphene quantum dots-based nano-biointerface platform for food toxin detection. Anal Bioanal Chem 410:1–11

    Article  Google Scholar 

  • Bhardwaj H, Pandey M, Rajesh, & Sumana, G. (2019) Electrochemical Aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. Microchim Acta 186(8):592

    Article  Google Scholar 

  • Bhardwaj H, Marquette CA, Dutta P, Sumana G (2020a) Integrated graphene quantum dot decorated functionalized nanosheet biosensor for mycotoxin detection. Anal Bioanal Chem 412(25):7029–7041

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj H, Sumana G, Marquette CA (2020b) A label-free ultrasensitive microfluidic surface Plasmon resonance biosensor for Aflatoxin B1 detection using nanoparticles integrated gold chip. Food Chem 307:125530

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj H, Sumana G, Marquette CA (2020c) Gold nanobipyramids integrated ultrasensitive optical and electrochemical biosensor for Aflatoxin B1 detection. Talanta 222:121578

    Article  PubMed  Google Scholar 

  • Bunney J, Williamson S, Atkin D, Jeanneret M, Cozzolino D, Chapman J (2017) The use of electrochemical biosensors in food analysis. Curr Res Nutr Food Sci J 5(3):183–195

    Article  Google Scholar 

  • Busa LS, Mohammadi S, Maeki M, Ishida A, Tani H, Tokeshi M (2016) A competitive immunoassay system for microfluidic paper-based analytical detection of small size molecules. The Analyst 141(24):6598–6603

    Article  CAS  PubMed  Google Scholar 

  • Chen BH, Inbaraj BS (2016) 12: Nanomaterial-based sensors for mycotoxin analysis in food. Nov Approaches Nanotechnol Food 1:387–423

    Article  CAS  Google Scholar 

  • Chen L, Jiang J, Shen G, Yu R (2014) A label-free electrochemical impedance immunosensor for the sensitive detection of aflatoxin B1. Anal Methods 7:2354–2359

    Article  Google Scholar 

  • Chen Y, Meng X, Zhu Y, Shen M, Lu Y, Cheng J, Xu Y (2018) Rapid detection of four mycotoxins in corn using a microfluidics and microarray-based immunoassay system. Talanta 186:299–305

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Frías I, Andrade C, Oliveira MDL (2017) Impedimetric immunoassay for aflatoxin B1 using a cysteine modified gold electrode with covalently immobilized carbon nanotubes. Microchim Acta 184:1–9

    Article  Google Scholar 

  • Das Q, Islam MR, Marcone MF, Warriner K, Diarra MS (2017) Potential of berry extracts to control foodborne pathogens. Food Control 73:650–662

    Article  CAS  Google Scholar 

  • Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N (2017) A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9(3):50

    Article  PubMed Central  Google Scholar 

  • Durán N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48(6):1127–1134

    Article  Google Scholar 

  • Hajslova J, Zachariasova M, Cajka T (2011) Analysis of multiple mycotoxins in food. Mass Spectrom Food Saf 747:233–258

    Article  CAS  Google Scholar 

  • Hu W, Chen H, Zhang H, He G, Li X, Zhang X, Liu Y, Li CM (2014) Sensitive detection of multiple mycotoxins by SPRi with gold nanoparticles as signal amplification tags. J Colloid Interface Sci 431:71–76

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Cao L, Li Q, Ma K, Yan P, Kirk DW (2015) Fabrication and modeling of an ultrasensitive label free impedimetric immunosensor for Aflatoxin B1 based on poly(o-phenylenediamine) modified gold 3D nano electrode ensembles. RSC Adv 5(68):55209–55217

    Article  CAS  Google Scholar 

  • Jaimez J, Fente CA, Vazquez BI, Franco CM, Cepeda A, Mahuzier G, Prognon P (2000) Application of the assay of aflatoxins by liquid chromatography with fluorescence detection in food analysis. J Chromatogr A 882(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Segarra-Fas A, Peters J, Zuilhof H, van Beek TA, Nielen MWF (2016) Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst 141(4):1307–1318

    Article  CAS  PubMed  Google Scholar 

  • Kabak B, Dobson A (2015) Mycotoxins in spices and herbs: an update. Crit Rev Food Sci Nutr 57(1):18–34

    Article  Google Scholar 

  • Käferstein FK, Motarjemi Y, Bettcher DW (1997) Foodborne disease control: a transnational challenge. Emerg Infect Dis 3(4):503–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasoju A, Shrikrishna NS, Shahdeo D, Khan AA, Alanazi AM, Gandhi S (2020) Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay. RSC Adv 10(20):11843–11850

    Article  CAS  Google Scholar 

  • Khlangwiset P, Shephard GS, Wu F (2011) Aflatoxins and growth impairment: a review. Crit Rev Toxicol 41(9):740–755

    Article  CAS  PubMed  Google Scholar 

  • Kolosova AY (2006) Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. Anal Bioanal Chem 384(1):286–294

    Article  CAS  PubMed  Google Scholar 

  • Lee T-H, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar M-I (2018) Exploring molecular-biomembrane interactions with surface plasmon resonance and dual polarization interferometry technology: expanding the spotlight onto biomembrane structure. Chem Rev 118(11):5392–5487

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Lv S, Lu M, Lin Z, Tang D (2016a) Potentiometric competitive immunoassay for determination of aflatoxin B1 in food by using antibody-labeled gold nanoparticles. Microchim Acta 183:1–8

    Article  Google Scholar 

  • Li Z, Ye Z, Fu Y, Xiong Y, Li Y (2016b) A portable electrochemical immunosensor for rapid detection of trace aflatoxin B1 in rice. Anal Methods 8(3):548–553

    Article  CAS  Google Scholar 

  • Li Z, Li X, Jian M, Geleta GS, Wang Z (2020) Two-dimensional layered nanomaterial-based electrochemical biosensors for detecting microbial toxins. Toxins 12(1):20

    Article  CAS  Google Scholar 

  • Linting Z, Ruiyi L, Zaijun L, Qianfang X, Yinjun F, Junkang L (2012) An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sens Actuators B Chem 174:359–365

    Article  Google Scholar 

  • Liu Q, Liu Y, Chen S, Wang F, Peng W (2017) A low-cost and portable dual-channel fiber optic surface plasmon resonance system. Sensors 17(12):2797

    Article  PubMed Central  Google Scholar 

  • Lu Z, Chen X, Wang Y, Zheng X, Li C (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578

    Article  CAS  Google Scholar 

  • Luo Y, Liu X, Li J (2018) Updating techniques on controlling mycotoxins: a review. Food Control 89:123–132

    Article  CAS  Google Scholar 

  • Ma H, Sun J, Zhang Y, Bian C, Xia S, Zhen T (2016a) Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosens Bioelectron 80:222–229

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Sun J, Zhang Y, Xia S (2016b) Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B1 in wheat. Biochem Eng J 115:38–46

    Article  CAS  Google Scholar 

  • Majzik A, Hornok V, Sebok D, Bartók T, Szente L, Tuza K, Dekany I (2015) Sensitive detection of aflatoxin B1 molecules on gold spr chip surface using functionalized gold nanoparticles. Cereal Res Commun 43:426–437

    Article  CAS  Google Scholar 

  • Malhotra B, Srivastava S, Ali MA, Singh C (2014) Nanomaterial-based biosensors for food toxin detection. Appl Biochem Biotechnol 174:880–896

    Article  CAS  PubMed  Google Scholar 

  • Malhotra B, Srivastava S, Augustine S (2015) Biosensors for food toxin detection: carbon nanotubes and graphene. MRS Online Proc Libr 1725(1):24–34

    Google Scholar 

  • Migliorini FL, Santos DMD, Soares AC, Mattoso LH, Oliveira ON, Correa DS (2020) Design of a low-cost and disposable paper-based immunosensor for the rapid and sensitive detection of aflatoxin B1. Chemosensors 8(3):87

    Article  CAS  Google Scholar 

  • Miklós G, Angeli C, Ambrus Á, Nagy A, Kardos V, Zentai A, Kerekes K, Farkas Z, Jóźwiak Á, Bartók T (2020) Detection of aflatoxins in different matrices and food-chain positions. Front Microbiol 11:1916

    Article  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Maffei M (2016) General mechanisms of plant defense and plant toxins. Plant Toxins, pp 1–22

  • Mondal K, Ali MA, Srivastava S, Malhotra BD, Sharma A (2016) Electrospun functional micro/nanochannels embedded in porous carbon electrodes for microfluidic biosensing. Sens Actuators B Chem 229:82–91

    Article  CAS  Google Scholar 

  • Moon J, Byun J, Kim H, Lim E-K, Jeong J, Jung J, Kang T (2018) On-site detection of aflatoxin B1 in grains by a palm-sized surface plasmon resonance sensor. Sensors 18:598

    Article  PubMed Central  Google Scholar 

  • Nasirian V, Chabok A, Barati A, Rafienia M, Arabi MS, Shamsipur M (2017) Ultrasensitive aflatoxin B1 assay based on FRET from aptamer labelled fluorescent polymer dots to silver nanoparticles labeled with complementary DNA. Microchim Acta 184(12):4655–4662

    Article  CAS  Google Scholar 

  • Neethirajan S, Ragavan KV, Weng X (2018) Agro-defense: biosensors for food from healthy crops and animals. Trends Food Sci Technol 73:25–44

    Article  CAS  Google Scholar 

  • Nishimwe K, Wanjuki I, Karangwa C, Darnell R, Harvey J (2017) An initial characterization of aflatoxin B1 contamination of maize sold in the principal retail markets of Kigali, Rwanda. Food Control 73:574–580

    Article  CAS  Google Scholar 

  • Oranusi S, Nwankwo U, Onu-Okpara I, Olopade B (2017) Assessment of micro flora, deoxynivalenol (Don) and fumonisin contamination of grains sold in local markets, Nigeria. Conv J Phys Life Sci 4(2):42–49

    Google Scholar 

  • Ozakyol A (2017) Global epidemiology of hepatocellular carcinoma (HCC epidemiology). J Gastrointest Cancer 48(3):238–240

    Article  PubMed  Google Scholar 

  • Park JH, Kim Y-P, Kim I-H, Ko S (2014) Rapid detection of aflatoxin B1 by a bifunctional protein crosslinker-based surface plasmon resonance biosensor. Food Control 36(1):183–190

    Article  CAS  Google Scholar 

  • Rai M, Jogee PS, Ingle AP (2015) Emerging nanotechnology for detection of mycotoxins in food and feed. Int J Food Sci Nutr 66(4):363–370

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Andersen A, Andersen N, Nielsen K, Hansen P, Larsen TO (2016) Chemical diversity, origin, and analysis of phycotoxins. J Nat Prod 79:662–673

    Article  CAS  PubMed  Google Scholar 

  • Reddy B, Raghavender C (2007) Outbreaks of aflatoxicoses in India. Afr J Food Agric Nutr Dev 7(5):1–15

    Google Scholar 

  • Reddy KRN, Salleh B, Saad B, Abbas H, Abel C, Shier WT (2010) An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev 29:3–26

    Article  CAS  Google Scholar 

  • Sabet F, Khabbaz H, Hosseini M, Dadmehr M, Ganjali M (2016) FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem 220:527–532

    Article  PubMed  Google Scholar 

  • Sadeghi H (2016) Graphene-based DNA sensors. In: Graphene science handbook: applications and industrialization, vol 13. CRC Press, pp 13–26

  • Scott PM (1978) Mycotoxins in feeds and ingredients and their origin. J Food Prot 41(5):385–398

    Article  CAS  PubMed  Google Scholar 

  • Seale AC, Blencowe H, Manu AA, Nair H, Bahl R, Qazi SA, Zaidi AK, Berkley JA, Cousens SN, Lawn JE (2014) Estimates of possible severe bacterial infection in neonates in sub-Saharan Africa, south Asia, and Latin America for 2012: a systematic review and meta-analysis. Lancet Infect Dis 14(8):731–741

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kumar A, Khan R (2017) Electrochemical immunosensor based on poly (3,4-ethylenedioxythiophene) modified with gold nanoparticle to detect aflatoxin B1. Mater Sci Eng C 76:802–809

    Article  CAS  Google Scholar 

  • Sharma A, Khan R, Catanante G, Sherazi TA, Bhand S, Hayat A, Marty JL (2018) Designed strategies for fluorescence-based biosensors for the detetion of mycotoxins. Toxins 10(5):197

    Article  PubMed Central  Google Scholar 

  • Shekhar M, Singh N, Sunaina SV, Kumar A. (2018) Effects of climate change on occurrence of aflatoxin and its impacts on maize in India. Int J Curr Microbiol Appl Sci 7(6):109–116

    Article  Google Scholar 

  • Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1):18–52

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Mehta A (2020) Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: a review. Food Sci Nutr 8(5):2183–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh C, Srivastava S, Ali MA, Gupta DT, Sumana G, Srivastava A, Mathur RB, Malhotra B (2013) Carboxylated multiwalled carbon nanotube based biosensor for aflatoxin detection. Sens Actuators B Chem 185:258–264

    Article  CAS  Google Scholar 

  • Solanki P, Singh J, Rupavali B, Tiwari S, Malhotra B (2016) Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater Sci Eng C 70:564–571

    Article  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Kumar V, Ali MA, Solanki P, Srivastava A, Sumana G, Saxena P, Joshi DA, Malhotra B (2013) Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5(7):3043–3051

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Ali MA, Umrao S, Parasar U, Srivastava A, Sumana G, Malhotra B, Pandey S, Hayase S (2014) Graphene oxide-based biosensor for food toxin detection. Appl Biochem Biotechnol 174(3):960–970

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Abraham S, Singh C, Ali MA, Srivastava A, Sumana G, Malhotra B (2015) Protein conjugated carboxylated gold@reduced graphene oxide for aflatoxin B 1 detection. RSC Adv 5:5406–5414

    Article  CAS  Google Scholar 

  • Stepurska K, Soldatkin O, Arkhypova V, Soldatkin A, Lagarde F, Jaffrezic-Renault N, Dzyadevych S (2015) Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. Talanta 144:1079–1084

    Article  CAS  PubMed  Google Scholar 

  • Szabo A, Stolz L, Granzow R (1995) Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr Opin Struct Biol 5(5):699–705

    Article  CAS  PubMed  Google Scholar 

  • Tan G-R, Wang M, Hsu C-Y, Chen N, Zhang Y (2016) Small upconverting fluorescent nanoparticles for biosensing and bioimaging. Adv Opt Mater 4(7):984–997

    Article  CAS  Google Scholar 

  • Tefera T, Kanampiu F, De Groote H, Hellin J, Mugo S, Kimenju S, Beyene Y, Boddupalli P, Shiferaw B, Banziger M (2011) The metal silo: an effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Prot 30:240–245

    Article  Google Scholar 

  • Torres A, Barros G, Palacios S, Chulze S, Battilani P (2014) Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res Int 62:11–19

    Article  CAS  Google Scholar 

  • Wacoo AP, Ocheng M, Wendiro D, Hawumba JF (2016) Development and characterization of an electroless plated silver/cysteine sensor platform for the electrochemical determination of aflatoxin B1. J Sens 2016:1–8

    Article  Google Scholar 

  • Wang Z, Li J, Xu L, Feng Y (2014) Electrochemical sensor for determination of aflatoxin B1 based on multiwalled carbon nanotubes-supported Au/Pt bimetallic nanoparticles. J Solid State Electrochem 18:2487–2496

    Article  CAS  Google Scholar 

  • Wei T, Ren P, Huang L, Ouyang Z, Wang Z, Kong X, Li T, Yin Y, Wu Y, He Q (2019) Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem 300:125176

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Dong J, Duan J, Hou J, Ai S, Li X (2018) Magnetic nanoparticles-based immunoassay for aflatoxin B1 using porous g-C3N4 nanosheets as fluorescence probes. Sens Actuators B Chem 278:147–152

    Article  Google Scholar 

  • Yan C, Wang Q, Yang Q, Wu W (2020) Recent advances in aflatoxins detection based on nanomaterials. Nanomaterials 10(9):1626

    Article  CAS  PubMed Central  Google Scholar 

  • Zekavati R, Safi S, Hashemi J, Rahmani-Cherati T, Tabatabaei M, Mohsenifar A, Bayat M (2013) Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchim Acta 180:1217–1223

    Article  CAS  Google Scholar 

  • Zhang Y, Bai Y, Yan B (2010) Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 15:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Shen Y, Shen G, Wang S, Shen G, Yu R (2015) Electrochemical immunosensor based on Pd-Au nanoparticles supported on functionalized PDDA-MWCNT nanocomposites for aflatoxin B1 detection. Anal Biochem 494:10–15

    Article  PubMed  Google Scholar 

  • Zhang X, Li C-R, Wang W-C, Xue J, Huang Y-L, Yang X-X, Tan B, Zhou X-P, Shao C, Ding S-J, Qiu J-F (2016) A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan. Food Chem 192:197–202

    Article  CAS  PubMed  Google Scholar 

  • Zinedine A, Mañes J (2009) Occurrence and legislation of mycotoxins in food and feed from Morocco. Food Control 20:334–344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Director, CSIR-National Physical Laboratory, New Delhi, India, for providing the facilities. H.B. is grateful to CEFIPRA for the award of Raman-Charpak Fellowship-2017.

Funding

No funding was received to complete the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajjala Sumana.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethics approval

Copyright permission is taken for reproduction of the figures (Figs. 5, 6, 7, 8) in this review article.

Consent to participate

Informed consent was obtained from all individual participants included in the review.

Consent for publication

Presented work has not been published or under consideration in any other journal and copy right permission is taken to reprint individual’s image.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, H., Rajesh & Sumana, G. Recent advances in nanomaterials integrated immunosensors for food toxin detection. J Food Sci Technol 59, 12–33 (2022). https://doi.org/10.1007/s13197-021-04999-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-021-04999-5

Keywords

Navigation