Skip to main content
Log in

Evaluation of safety and probiotic properties of a strain of Enterococcus faecium isolated from chicken bile

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Probiotics are important bacteria due to their benefit on human health. In this study, four strains of lactic acid bacteria from chicken bile were isolated and the strain with the best antimicrobial activity was selected for further identification and evaluation on its probiotic traits and safety. The strain was identified as Enterococcus faecium by biochemical characterization and 16S rDNA gene sequencing. The strain, named E. faecium MK-SQ-1, was tolerant to acid (pH 3.0), bile salts (up to 0.3%) or trypsin (up to 0.4%) for 3 h and it was able to survive from high temperature (up to 60 °C) for 15 min. This strain inhibited the growth of Salmonella enteritidis and Staphylococcus aureus intermediately. The genes responsible for virulence including asa1, cylA, efaA, esp, gelE and hyl were absent and the mice administrated orally with a very high dose (2 × 109 CFU) of the strain daily for 35 days were not found abnormal. The strain enhanced the serum IgG level and phagocytic index of mice significantly by daily oral administration at a high dose (2 × 108 CFU) for 21 days (p < 0.05). The strain did not have multi-antibiotic resistance and vancomycin resistance. Comprehensive evaluation showed E. faecium MK-SQ-1 could be a candidate as a probiotic strain used in human or animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam S, Mushtaq M (2009) Antibiotic associated diarrhea in children. Indian Pediatr 46:491–496

    PubMed  Google Scholar 

  • Ambadoyiannis G, Hatzikamari M, Litopoulou-Tzanetaki E, Tzanetakis N (2004) Probiotic and technological properties of enterococci isolates from infants and cheese. Food Biotechnol 18:307–325

    CAS  Google Scholar 

  • Ayyash M, Abushelaibi A, Al-Mahadin S et al (2018) In-vitro investigation into probiotic characterization of Streptococcus and Enterococcus isolated from camel milk. LWT Food Sci Technol 87:478–487

    CAS  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  • Broom LJ, Miller HM, Kerr KG, Knapp JS (2006) Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets. Res Vet Sci 80:45–54

    CAS  PubMed  Google Scholar 

  • Buchanan RE, Gibbons NE (1984) Bergey’s manual of systematic bacteriology, vol 1. Science Press, Beijing, pp 347–395

    Google Scholar 

  • Bustos AY, de Valdez GF, Fadda S, Taranto MP (2018) New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int 112:250–262

    CAS  PubMed  Google Scholar 

  • Canani RB, Cirillo P, Terrin G et al (2007) Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations. BMJ 335(7615):340

    PubMed  PubMed Central  Google Scholar 

  • Coleman R, Lowe PJ, Billington D (1980) Membrane lipid composition and susceptibility to bile salt damage. BBA Biomembranes 599:294–300

    CAS  PubMed  Google Scholar 

  • Collado MC, Gueimonde M, Herna’ndez M, Sanz Y, Salminen S (2005) Adhesion of selected bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 68:2672–2678

    PubMed  Google Scholar 

  • Cross ML (2002) Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol 34:245–253

    CAS  PubMed  Google Scholar 

  • Dong X, Cai M (2001) Manual of system determinative common bacteriology. Science Press, Beijing, pp 370–398

    Google Scholar 

  • FAO/WHO (2006) Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food and Nutritional paper No. 85 (ISBN 92-5-105513-0)

  • Feng Y, Qiao L, Liu R et al (2017) Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. Ann Microbiol 67:239–253

    Google Scholar 

  • Fernandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455

    CAS  PubMed  Google Scholar 

  • Floch MH (2010) Probiotic therapy for ulcerative colitis. J Clin Gastroenterol 44:237–238

    PubMed  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    CAS  PubMed  Google Scholar 

  • Gaglio R, Couto N, Marques C et al (2016) Evaluation of antimicrobial resistance and virulence of enterococci from equipment surfaces, raw materials, and traditional cheeses. Int J Food Microbiol 236:107–114

    CAS  PubMed  Google Scholar 

  • George A, Chinnappan S, Choudhary Y, Bommu P, Sridhar M (2014) Immunomodulatory activity of an aqueous extract of Polygonum minus Huds on Swiss albino mice using carbon clearance assay. Asian Pac J Trop Dis 4:398–400

    Google Scholar 

  • Hlivak P, Odraska J, Ferencik M et al (2005) One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl Lek Listy 106:67–72

    CAS  PubMed  Google Scholar 

  • Juturu V, Wu J (2018) Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv 36:2187–2200

    CAS  PubMed  Google Scholar 

  • Khalkhali S, Mojganic N (2018) In vitro and in vivo safety analysis of Enterococcus faecium 2C isolated from human breast milk. Microb Pathog 116:73–77

    CAS  PubMed  Google Scholar 

  • Kos B, Suskovic J, Vukovic S et al (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987

    CAS  PubMed  Google Scholar 

  • Krammer HJ, Schlieger F, Harder H et al (2005) Probiotics as therapeutic agents in irritable bowel syndrome. Z Gastroenterol 43:467–471

    PubMed  Google Scholar 

  • Li G (2012) Intestinal probiotics: interactions with bile salts and reduction of cholesterol. Procedia Environ Sci 12(Part B):1180–1186

    CAS  Google Scholar 

  • Lins RX, Oliveira-Andrade A, Hirata JR et al (2013) Antimicrobial resistance and virulence traits of Enterococcus faecalis from primary endodontic infections. J Dent 41:779–786

    CAS  PubMed  Google Scholar 

  • Liu Y, Tang H, Lin Z, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33:1484–1492

    CAS  PubMed  Google Scholar 

  • Lye HS, Kuan CY, Ewe JA et al (2009) The improvement of hypertension by probiotics: effects on cholesterol, diabetes, renin, and phytoestrogens. Int J Mol Sci 109:3755–3775

    Google Scholar 

  • Martin L, Pieper R, Kroger S et al (2012) Influence of age and Enterococcus faecium NCIMB 10415 on development of small intestinal digestive physiology in piglets. Anim Feed Sci Technol 175:65–75

    CAS  Google Scholar 

  • Messi P, Guerrieri E, de Niederhäusern S, Sabia C, Bondi M (2006) Vancomycin-resistant enterococci (VRE) in meat and environmental samples. Int J Food Microbiol 107:218–222

    CAS  PubMed  Google Scholar 

  • Osterlund P, Ruotsalainen T, Korpela R et al (2007) Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 97:1028–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paéz R, Lavari L, Vinderola G et al (2012) Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Res Int 48:748–754

    Google Scholar 

  • Palmer KL, Godfrey P, Griggs A et al (2012) Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio 3(1):e00318-11

    PubMed  PubMed Central  Google Scholar 

  • Pellegrino MS, Frola ID, Natanael B et al (2019) In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics Antimicro Proteins 11:74–84

    CAS  Google Scholar 

  • Pollmann M, Nordhoff M, Pospischil A, Tedin K, Wieler LH (2005) Effects of a probiotic strain of Enterococcus faecium on the rate of natural chlamydia infection in swine. Infect Immun 73:4346–4353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad J, Gill H, Smart J, Gopal PK (1998) Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8:993–1002

    Google Scholar 

  • Rehaiem A, Belgacem ZB, Edalatian MR, Martínez B, Guerra NP (2014) Assessment of potential probiotic properties and multiple bacteriocin encoding-genes of the technological performing strain Enterococcus faecium MMRA. Food Control 37:343–350

    CAS  Google Scholar 

  • Reik R, Tenover F, Klein E, McDonald C (2008) The burden of vancomycin-resistant enterococcal infections in US hospitals, 2003 to 2004. Diagn Microbiol Infect Dis 62:81–85

    PubMed  Google Scholar 

  • Reyes K, Bardossy AC, Zervos M (2016) Vancomycin-resistant enterococci: epidemiology, infection prevention, and control. Infect Dis Clin N Am 30:953–965

    Google Scholar 

  • Samtiya M, Bhat MI, Gupta T et al (2019) Safety assessment of potential probiotic Lactobacillus fermentum MTCC-5898 in murine model after repetitive dose for 28 days (sub-acute exposure). Probiotics Antimicrob Prot. https://doi.org/10.1007/s12602-019-09529-6

    Article  Google Scholar 

  • Scharek L, Guth J, Reiter K et al (2005) Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet Immunol Immunopathol 105:151–161

    CAS  PubMed  Google Scholar 

  • Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754

    CAS  PubMed  Google Scholar 

  • Singh TP, Kaur G, Malik RK, Schillinger U, Guigas C, Kapila S (2012) Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics Antimicrob Prot 4:47–58

    CAS  Google Scholar 

  • Solieri L, Bianchi A, Mottolese G, Lemmetti F, Giudici P (2014) Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiol 38:240–249

    CAS  PubMed  Google Scholar 

  • Sun P, Wang J, Jiang Y (2010) Effects of Enterococcus faecium (SF68) on immune function in mice. Food Chem 123:63–68

    CAS  Google Scholar 

  • Tinrat S, Khuntayaporn P, Thirapanmethee K, Chomnawang MT (2018) In vitro assessment of Enterococcus faecalis MTC 1032 as the potential probiotic in food supplements. J Food Sci Technol 55:2384–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon MY, Kim YJ, Hwang H (2008) Properties and safety aspects of Enterococcus faecium strains isolated from Chungkukjang, a fermented soy product. LWT Food Sci Technol 41:925–933

    CAS  Google Scholar 

  • Zhang ZF, Rolando AV, Kim IH (2016) Effects of benzoic acid, essential oils and Enterococcus faecium SF68 on growth performance, nutrient digestibility, blood profiles, faecal microbiota and faecal noxious gas emission in weanling pigs. J Appl Anim Res 44:173–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoquan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhai, M., Li, J. et al. Evaluation of safety and probiotic properties of a strain of Enterococcus faecium isolated from chicken bile. J Food Sci Technol 57, 578–587 (2020). https://doi.org/10.1007/s13197-019-04089-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-04089-7

Keywords

Navigation