Skip to main content
Log in

Characterization of the free and glycosidically bound aroma potential of two important tomato cultivars grown in Turkey

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Free and glycosidically bound volatiles from two major tomato cultivars (Lycopersicon esculantum L. cv. Alida and Merve) of Turkey were determined. Free volatile compounds were extracted using liquid–liquid microextraction, while bound volatiles were extracted using solid phase extraction. The compounds were analyzed using GC-FID and GC–MS. Alida showed presence of, 39 free and 32 bound aroma compounds again 38 free and 31 bound aroma compounds is Merve. The odor activity values of the volatile compounds suggested that hexanal, (Z)-3-hexenal, (E,Z)-2,4-decadienal, (E,E)-2,4-decadienal and 2-phenylethanol were most significant odorants in both cultivars. Guaiacol and eugenol were flavor contributors for Merve. The norisoprenoids 5,6-epoxy-β-ionone and 3-hydroxy-β-ionone were observed in free form in tomato. Norisoprenoids, terpenoids, volatile phenols and higher alcohols were present in the glycosidic extract. Among the glycosidically bound compounds, 2-phenylethanol, guaiacol and eugenol were found to be potential contributors to overall tomato flavor upon hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert C, Chanforan C (2007) Postharvest changes in physicochemical properties and volatile constituents of apricot (Prunus armeniaca L.). Characterisation of 28 cultivars. J Agric Food Chem 55(8):3074–3082

    Article  CAS  PubMed  Google Scholar 

  • Aubert C, Amid C, Baumes R, Gunata Z (2003) Investigation of bound aroma constituents of yellow-fleshed nectarines (Prunus persica L. Cv. Springbright). Changes in bound aroma profile during maturation. J Agric Food Chem 51(21):6280–6286

    Article  CAS  PubMed  Google Scholar 

  • Baldwin EA, Scott JW, Shewmaker CK, Schuch W (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. Hort-Science 35:1013–1022

    CAS  Google Scholar 

  • Bezman Y, Mayer F, Takeoka GR, Buttery RG, Ben-Oliel G, Haim D, Rabinowitch GD, Michael Naim M (2003) Differential effects of tomato (Lycopersicon esculentum Mill) matrix on the volatility of important aroma compounds. J Agric Food Chem 51(3):722–726

    Article  CAS  PubMed  Google Scholar 

  • Buttery RG, Teranishi RAF, Ling LC (1989) Fresh tomato volatiles. In: Teranishi RAF, Buttery RG, Shahidi F (eds) Flavor chemistry: trends and developments. ACS Symp, Washington D.C., pp 211–222

    Google Scholar 

  • Buttery RG, Teranishi R, Ling LC, Turnbaugh JG (1990) Quantitative and sensory studies on tomato paste volatiles. J Agric Food Chem 38(1):336–340

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Agustí A, Ruiz JJ (2005) Analysis of flavor volatile compounds by dynamic headspace in traditional and hybrid cultivars of Spanish tomatoes. Eur Food Res Technol 222(5–6):536–542

    Google Scholar 

  • Cebolla-Cornejo J, Rosello S, Valcarcel M, Serrano E, Beltran J, Nuez F (2011) Evaluation of genotype and environment effects on taste and aroma flavor components of spanish fresh tomato varieties. J Agric Food Chem 59(6):2440–2450

    Article  CAS  PubMed  Google Scholar 

  • Fabre M, Guichard E, Aubry V, Hugi A (2004) Correlation between sensory time-intensity and solid-phase microextraction analysis of fruity flavor in model food emulsions. In: Deibler K, Delwiche J (eds) Handbook of flavor characterization. CRC Press, New York, pp 163–175

    Google Scholar 

  • FAO (2018) Agricultural statistical database. http://www.faostat.fao.org

  • Figàs MR, Prohens J, Raigón MD, Fitaa A, García-Martínez MD, Casanova C, Borràs D, Plazas M, Andújar I, Soler S (2015) Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chem 187:517–524

    Article  CAS  PubMed  Google Scholar 

  • Grosch W (2001) Evaulation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses 26:533–545

    Article  CAS  PubMed  Google Scholar 

  • Gunata Z, Bitteur S, Brillouet JM, Bayonove C, Cordonnier R (1988) Sequential enzymic-hydrolysis of potentially aromatic glycosides from grape. Carbohyd Res 184:139–149

    Article  CAS  Google Scholar 

  • Heredia A, Peinado I, Rosa E, Andrés A, Escriche I (2012) Volatile profile of dehydrated cherry tomato: influences of osmotic pre-treatment and microwave power. Food Chem 130(4):889–895

    Article  CAS  Google Scholar 

  • Kavita S, Singh M, Chandra Rai AC (2015) Bioactive compounds of tomato fruits from transgenic plants tolerant to drought. LWT Food Sci Technol 61(2):609–614

    Article  CAS  Google Scholar 

  • Komes D, Lovric T, Kovacevic G, Gajdos K, Banavic M (2005) Trehalose improves flavour retention in dehydrated apricot puree. Int J Food Sci Technol 40:425–435

    Article  CAS  Google Scholar 

  • Majidi H, Minaei S, Almassi M, Mostofi Y (2014) Tomato quality in controlled atmosphere storage, modified atmosphere packaging and cold store. J Food Sci Technol 51(9):2155–2161

    Article  CAS  PubMed  Google Scholar 

  • Marlatt C, Ho CT, Chien M (1992) Studies of aroma constituents bound as glycosides in tomato. J Agric Food Chem 40(2):249–252

    Article  CAS  Google Scholar 

  • Mayer F, Takeoka G, Buttery R, Whitehand L, Bezman Y, Naim M, Rabinowitch H (2004) Differences in the aroma of selected fresh tomato cultivars. In: Deibler K, Delwiche J (eds) Handbook of flavor characterization. Marcel Dekker Inc, New York, pp 189–205

    Google Scholar 

  • Mayer F, Takeoka GR, Buttery RG, Whitehand LC, Naim M, Rabinowitch HD (2008) Studies on the aroma of five fresh tomato cultivars and the precursors of cis- and trans-4,5-epoxy-(E)-2-decenals and methional. J Agric Food Chem 56(10):3749–3757

    Article  CAS  PubMed  Google Scholar 

  • Meret M, Brat P, Mertz C, Lebrun M, Gunata Z (2011) Contribution to aroma potential of Andean blackberry (Rubus glaucus Benth.). Food Res Int 44:54–60

    Article  CAS  Google Scholar 

  • Nour V, Ionica ME, Trandafir I (2015) Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. J Food Sci Technol 52(12):8260–8267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Serrano P, Gil JV (2007) Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.). J Agric Food Chem 55(22):9170–9176

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Serrano P, Gil JV (2010) Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. J Agric Food Chem 58(2):1106–1114

    Article  CAS  PubMed  Google Scholar 

  • Özkaya O, Taşkin H, Büyükalaca S, Dündar Ö (2013) Assessment of different 1-methylcyclopropene doses on physical and chemical quality of organically grown tomato cv. Zoro. J Food Agric Environ JFAE 11:195–198

    Google Scholar 

  • Selli S (2007) Volatile constituents of orange wine obtained from moro oranges (Citrus Sinensis [L.] Osbeck). J Food Qual 30:330–341

    Article  CAS  Google Scholar 

  • Selli S, Bagatar B, Sen K, Kelebek HC (2011) Evaluation of differences in the aroma composition of free-run and pressed neutral grape juices obtained from emir (Vitis vinifera L.). Chem Biodivers 8(9):1776–1782

    Article  CAS  PubMed  Google Scholar 

  • Selli S, Kelebek H, Ayseli MT, Tokbas H (2014) Characterization of the most aroma-active compounds in cherry tomato by application of the aroma extract dilution analysis. Food Chem 165:540–546. https://doi.org/10.1016/j.foodchem.2014.05.147

    Article  CAS  PubMed  Google Scholar 

  • Syngenta-Turkey (2016). http://www3.syngenta.com/country/tr/tr/Pages/home.aspx

  • Uçan F, Ağçam E, Akyildiz A (2016) Bioactive compounds and quality parameters of natural cloudy lemon juice. J Food Sci Technol 53(3):1465–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winterhalter P, Skouroumounis GK (1997) Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 74–105

    Google Scholar 

  • Yilmaztekin M, Cabaroglu T, Gunata Y (2011) Differentiation of Turkish Rakies through headspace solid-phase microextraction and gas chromatography–mass spectrometry analysis. J Inst Brew 117(4):622–626

    Article  CAS  Google Scholar 

  • Zhu H, Zhu J, Wang L, Li Z (2016) Development of a SPME-GC-MS method for the determination of volatile compounds in Shanxi aged vinegar and its analytical characterization by aroma wheel. J Food Sci Technol 53(1):171–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific and Technological Research Council of Turkey under project number BOSPHORUS PIA-525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okan Özkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkaya, O., Şen, K., Aubert, C. et al. Characterization of the free and glycosidically bound aroma potential of two important tomato cultivars grown in Turkey. J Food Sci Technol 55, 4440–4449 (2018). https://doi.org/10.1007/s13197-018-3362-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3362-0

Keywords

Navigation