Skip to main content
Log in

Caco-2 cell transport of purple sweet potato anthocyanins-phospholipids complex

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the role of phospholipids in transepithelial transport and the impact on the antioxidant activity of purple sweet potato anthocyanins (PSPAs) was evaluated. PSPAs were purified by column chromatography, and then PSPAs-phospholipids complex (PSPAs-PC) was prepared. In antioxidant assay in vitro, PSPAs-PC exhibited potential antioxidant activity; meanwhile, it exhibited relatively higher stability in mimic gastrointestinal digestion conditions. The inhibitory effect of PSPAs-PC on the oxidation of soybean oil was significantly higher after 15 days storage. The presence of phospholipids increased the transepithelial transport of PSPAs; its apparent permeability coefficient (Papp) was higher, while its efflux ratio was lower than PSPAs. Based on the above results, it clearly displays the potential of phospholipids in the promotion of intestinal transport of PSPAs, and further studies are needed to explore the in-depth mechanism of the bioavailability promotion effect of phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi:10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  • Bohn T (2014) Dietary factors affecting polyphenol bioavailability. Nutr Rev 72:429–452. doi:10.1111/nure.12114

    Article  Google Scholar 

  • Cardona JA, Mertens-Talcott SU, Talcott ST (2015) Phospholipids and terpenes modulate Caco-2 transport of açaí anthocyanins. Food Chem 175:267–272. doi:10.1016/j.foodchem.2014.11.119

    Article  CAS  Google Scholar 

  • Chen JY, Zhang X, Wu ZF, Weng PF (2015) Antioxidant activity of (−)-epigallocatechin gallate–phospholipid complex. Mod Food Sci Technol 31:137–143 (in Chinese). doi: 10.13982/j.mfst.1673-9078.2015.5.022

  • Cuomo J, Appendino G, Dern AS, Schneider E, McKinnon TP, Brown MJ, Togni S, Dixon BM (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod 74:664–669. doi:10.1021/np1007262

    Article  CAS  Google Scholar 

  • Dai J, Gupte A, Gates L, Mumper RJ (2009) A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Food Chem Toxicol 47:837–847. doi:10.1016/j.fct.2009.01.016

    Article  CAS  Google Scholar 

  • De Pascual-Teresa S, Moreno DA, García-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703. doi:10.3390/ijms11041679

    Article  Google Scholar 

  • Decker EA (1997) Phenolics: prooxidants or antioxidants? Nutr Rev 55:396–398. doi:10.1111/j.1753-4887.1997.tb01580.x

    Article  CAS  Google Scholar 

  • Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341. doi:10.1007/s00394-015-0852-y

    Article  CAS  Google Scholar 

  • Fricker G, Kromp T, Wendel A, Wendel A, Blume A, Zirkel J, Rebmann H, Setzer C, Quinkert RO, Martin F, Müller-Goymann C (2010) Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res 27:1469–1486. doi:10.1007/s11095-010-0130-x

    Article  CAS  Google Scholar 

  • Ichiyanagi T, Shida Y, Rahman MM, Sekiya M, Hatano Y, Matsumoto H, Hirayama M, Konishi T, Ikeshiro Y (2008) Effect of both aglycones and sugar moiety towards phase II metabolism of anthocyanins. Food Chem 110:493–500. doi:10.1016/j.foodchem.2008.02.031

    Article  CAS  Google Scholar 

  • Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A (2017) Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Annu Rev Food Sci Technol 8:155–180. doi:10.1146/annurev-food-030216-025636

    Article  CAS  Google Scholar 

  • Keppler K, Humpf HU (2005) Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorgan Med Chem 13:5195–5205. doi:10.1016/j.bmc.2005.05.003

    Article  CAS  Google Scholar 

  • Khan J, Alexander A, Ajazuddin SarafS, Saraf S (2013) Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release 168:50–60. doi:10.1016/j.jconrel.2013.02.025

    Article  CAS  Google Scholar 

  • Kosińska A, Xie YL, Diering S, Héritier J, Andlauer W (2012) Stability of phenolic compounds isolated from cocoa, green tea and strawberries in Hank’s balanced salt solution under cell culture conditions. Pol J Food Nutr Sci 62:91–96. doi:10.2478/v10222-011-0048-y

    Google Scholar 

  • Lambert JD, Sang S, Lu AY, Yang CS (2007) Metabolism of dietary polyphenols and possible interactions with drugs. Curr Drug Metab 8:499–507. doi:10.2174/138920007780866870

    Article  CAS  Google Scholar 

  • Lim S, Xu J, Kim J, Chen TY, Su X, Standard J, Carey E, Griffin J, Herndon B, Katz B, Tomich J, Wang W (2013) Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol Nutr Food Res 57:1908–1917. doi:10.1002/mnfr.201300040

    Article  CAS  Google Scholar 

  • Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK (2007) Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 330:155–163. doi:10.1016/j.ijpharm.2006.09.025

    Article  CAS  Google Scholar 

  • Mills DJS, Tuohy KM, Booth J, Buck M, Crabbe MJC, Gibson GR, Ames JM (2008) Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects. J Appl Microbiol 105:706–714. doi:10.1111/j.1365-2672.2008.03783.x

    Article  CAS  Google Scholar 

  • Pathan R, Bhandari U (2011) Preparation characterization of embelin phospholipid complex as effective drug delivery tool. J Incl Phenom Macrocycl Chem 69:139–147. doi:10.1007/s10847-010-9824-2

    Article  CAS  Google Scholar 

  • Protti M, Gualandi I, Mandrioli R, Zappoli S, Tonelli D, Mercolini L (2017) Analytical profiling of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries. J Pharm Biomed Anal 143:252–260. doi:10.1016/j.jpba.2017.05.048

    Article  CAS  Google Scholar 

  • Ravanfar R, Tamadon AM, Niakousari M (2015) Optimization of ultrasound assisted extraction of anthocyanins from red cabbage using Taguchi design method. J Food Sci Tech 52:8140–8147. doi:10.1007/s13197-015-1880-6

    Article  CAS  Google Scholar 

  • Ryo F, Ayato K, Setsuko H (2009) Anti-oxidative effects of rooibos tea extract on autoxidation and thermal oxidation of lipids. J Oleo Sci 58:275–283. doi:10.5650/jos.58.275

    Article  Google Scholar 

  • Selma MV, Espín JC, Tomásbarberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501. doi:10.1021/jf902107d

    Article  CAS  Google Scholar 

  • Semalty A, Semalty M, Rawat MSM, Franceschi F (2010) Supramolecular phospholipids–polyphenolics interactions: the PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia 81:306–314. doi:10.1016/j.fitote.2009.11.001

    Article  CAS  Google Scholar 

  • Steinert RE, Ditscheid B, Netzel M, Jahreis G (2008) Absorption of black currant anthocyanins by monolayers of human intestinal epithelial Caco-2 cells mounted in using type chambers. J Agric Food Chem 56:4995–5001. doi:10.1021/jf703670h

    Article  CAS  Google Scholar 

  • Stratil P, Klejdus B, Kubán V (2006) Determination of total content of phenolic compounds and their antioxidant activity in vegetables-evaluation of spectrophometic methods. J Agric Food Chem 54:607–616. doi:10.1021/jf052334j

    Article  CAS  Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci 45:587–605. doi:10.1080/10408390591001135

    Article  CAS  Google Scholar 

  • Wettasinghe M, Shahidi F (1999) Evening primrose meal: a source of natural antioxidants and scavenger of hydrogen peroxide and oxygen-derived free radicals. J Agric Food Chem 47:1801–1812. doi:10.1021/jf9810416

    Article  CAS  Google Scholar 

  • Willenberg I, Michael M, Wonik J, Bartel LC, Empl MT, Schebb NH (2015) Investigation of the absorption of resveratrol oligomers in the Caco-2 cellular model of intestinal absorption. Food Chem 167:245–250. doi:10.1016/j.foodchem.2014.06.103

    Article  CAS  Google Scholar 

  • Zhang X, Xu F, Gao Y, Wu J, Sun Y, Zeng XX (2012) Optimising the extraction of tea polyphenols, (−)-epigallocatechin gallate and theanine from summer green tea by using response surface methodology. Int J Food Sci Technol 47:2151–2157. doi:10.1111/j.1365-2621.2012.03082.x

    Article  CAS  Google Scholar 

  • Zhang X, Wu ZF, Weng PF (2014) Antioxidant and hepatoprotective effect of (−)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3′′Me) from Chinese oolong tea. J Agric Food Chem 62:10046–10054. doi:10.1021/jf5016335

    Article  CAS  Google Scholar 

  • Zhang X, Wu ZF, Weng PF, Yang Y (2015) Analysis of tea catechins in vegetable oils by high-performance liquid chromatography combined with liquid–liquid extraction. Int J Food Sci Technol 50:885–891. doi:10.1111/ijfs.12726

    Article  CAS  Google Scholar 

  • Zhang X, Yang Y, Wu ZF, Weng PF (2016) The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J Agric Food Chem 64:2582–2590. doi:10.1021/acs.jafc.6b00586

    Article  CAS  Google Scholar 

  • Zhang L, Zhang X, Cheng M, Cao JX, Wu ZF, Weng PF, Yan MD (2017) Oolong tea polyphenols–phospholipids complex reduces obesity in high fat diet-induced mice model. Eur J Lipid Sci Technol. doi:10.1002/ejlt.201600394

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by National Natural Science Foundation of China (31501473), Zhejiang Provincial Natural Science Foundation of China (LQ15C200003), Key Research and Development Project of Zhejiang Province (2017C02039), People-benefit Project of Ningbo (2015C10061), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Zhang, X., Cao, J. et al. Caco-2 cell transport of purple sweet potato anthocyanins-phospholipids complex. J Food Sci Technol 55, 304–312 (2018). https://doi.org/10.1007/s13197-017-2940-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2940-x

Keywords

Navigation