Skip to main content

Advertisement

Log in

Phospholipids and Lipid-Based Formulations in Oral Drug Delivery

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Phospholipids become increasingly important as formulation excipients and as active ingredients per se. The present article summarizes particular features of commonly used phospholipids and their application spectrum within oral drug formulation and elucidates current strategies to improve bioavailability and disposition of orally administered drugs. Advantages of phospholipids formulations not only comprise enhanced bioavailability of drugs with low aqueous solubility or low membrane penetration potential, but also improvement or alteration of uptake and release of drugs, protection of sensitive active agents from degradation in the gastrointestinal tract, reduction of gastrointestinal side effects of non-steroidal anti-inflammatory drugs and even masking of bitter taste of orally applied drugs. Technological strategies to achieve these effects are highly diverse and offer various possibilities of liquid, semi-liquid and solid lipid-based formulations for drug delivery optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Anand BS, Romero JJ, Sanduja SK, Lichtenberger LM. Phospholipid association reduces the gastric mucosal toxicity of Aspirin in human subjects. Am J Gastroenterol. 1999;94:1818–22.

    Article  PubMed  CAS  Google Scholar 

  2. Arien A, Henry-Toulme N, Dupuy B. Calcitonin loaded liposomes: stability under acidic conditions and bile salts-induced disruption resulting in calcitonin–phospholipid complex formation. Biochim Biophys Acta. 1994;1193:93–100.

    Article  PubMed  CAS  Google Scholar 

  3. Bekerman T, Golenser J, Domb A. Cyclosporin nanoparticulate lipospheres for oral administration J. Pharm Sci. 2004;93:1264–70.

    Article  CAS  Google Scholar 

  4. Borgstrom B, Dahlquist A, Lundh G, Sjovall J. Studies of intestinal digestion and absorption in the human. J Clin Invest. 1957;36:1521–36.

    Article  PubMed  CAS  Google Scholar 

  5. Caliph SM, Charman WN, Porter CJH. Effect of short-, medium-, and long-chain fatty acid based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci. 2000;89:1073–84.

    Article  PubMed  CAS  Google Scholar 

  6. Cao J, Sun J, Wang X, Li X, Deng Y. N-Trimethyl chitosan-coated multivesicular liposomes for oxymatrine oral delivery. Drug Dev Ind Pharm. (2009). Epub ahead of print].

  7. Carlson RP, Hartman DA, Ochalski SJ, Zimmerman JL, Glaser KB. Sirolimus (rapamycin, Rapamune) and combination therapy with cyclosporin A in the rat developing adjuvant arthritis model: correlation with blood levels and the effects of different oral formulations. Inflamm Res. 1998;47:339–44.

    Article  PubMed  CAS  Google Scholar 

  8. Carriere F, Barrowman JA, Verger R, Laugier R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 1993;105:876–88.

    PubMed  CAS  Google Scholar 

  9. Chakraborty S, Shukla D, Mishra B, Singh S. Lipid—an emerging platform for oral delivery of drugs with poor bioavailability. Europ J Pharm Biopharm. 2009;73:1–15.

    Article  CAS  Google Scholar 

  10. Chen Y, Lu Y, Chen J, Lai J, Sun J, Hu F et al. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm. 2009;376:153–60.

    Article  PubMed  CAS  Google Scholar 

  11. Chen Y, Ping Q, Guo J, Lv W, Gao J. The absorption behavior of cyclosporin A lecithin vesicles in rat intestinal tissue. Int J Pharm. 2003;261:21–6.

    Article  PubMed  CAS  Google Scholar 

  12. Chen X, Young TJ, Sarkari M, Williams 3rd RO, Johnston KP. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm. 2002;21:3–14.

    Article  CAS  Google Scholar 

  13. Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Contr Rel. 2006;28:242–50.

    Article  CAS  Google Scholar 

  14. Czogalla A. Oral cyclosporine A—the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett. 2009;14:139–52.

    Article  PubMed  CAS  Google Scholar 

  15. Değim IT, Gümüşel B, Değim Z, Ozçelikay T, Tay A, Güner S. Oral administration of liposomal insulin. J Nanosci Nanotechnol. 2006;6:2945–9.

    Article  PubMed  CAS  Google Scholar 

  16. Delmas G, Park S, Chen ZW, Tan F, Kashiwazaki R, Zarif L et al. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother. 2002;46:2704–7.

    Article  PubMed  CAS  Google Scholar 

  17. Dial E, Zayat M, Lopez-Storey M, Tran D, Lichtenberger L. Oral phosphatidylcholine preserves the GI mucosal barrier during LPS-induced inflammation. Shock. 2008;30:729–33.

    Article  PubMed  CAS  Google Scholar 

  18. Dunjic BS, Axelson J, Ar’Rajab A, Larsson K, Bengmark S. Gastroprotective capability of exogenous phosphatidylcholine in experimentally induced chronic gastric ulcer in rats. Scand J Gastroenterol. 1993;28:89–94.

    Article  PubMed  CAS  Google Scholar 

  19. Dvir E, Friedman JE, Lee JY, Koh JY, Younis F, Raz S et al. A novel phospholipid derivative of indomethacin, DP-155 [mixture of 1-steroyl and 1-palmitoyl-2-{6-[1-(p-chlorobenzoyl)-5-methoxy-2-methyl-3-indolyl acetamido]hexanoyl}-sn-glycero-3-phosophatidyl [corrected] choline], shows superior safety and similar efficacy in reducing brain amyloid beta in an Alzheimer’s disease model. J Pharmacol Exp Ther. 2006;318:1248–56.

    Article  PubMed  CAS  Google Scholar 

  20. Dvir E, Elman A, Simmons D, Shapiro I, Duvdevani R, Dahan A et al. DP-155, a Lecithin Derivative of Indomethacin, is a novel nonsteroidal antiinflammatory drug for analgesia and alzheimer’s diease therapy. CNS Drug Rev. 2007;13:260–77.

    Article  PubMed  CAS  Google Scholar 

  21. Fini A, Bergamante V, Ceschel GC, Ronchi C, de Moraes CA. Fast dispersible/slow releasing ibuprofen tablets. Eur J Pharm Biopharm. 2008;69:335–41.

    Google Scholar 

  22. Fukunaga M, Miller MM, Deftos LJ. Liposome entrapped calcitonin and parathyroid hormone are orally effective in rats. Horm Metab Res. 1991;23:166–7.

    Article  PubMed  CAS  Google Scholar 

  23. Gao D, Han L, Wang J. Self-micro emulsifying drug delivery system loaded with gentiopicrin phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. Abstract 2009 AAPS Annual Meeting and Exposition 11/7/2009–11/12/2009 (http://abstracts.aapspharmaceutica.com/ExpoAAPS09/CC/forms/attendee/index.aspx?Content=sessionInfo&sessionId=278).

  24. Garcia-Fuentes M, Prego C, Torres D, Alonso M. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci. 2005;25:133–43.

    Article  PubMed  CAS  Google Scholar 

  25. Garcia-Fuentes M, Torres D, Alonso MJ. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int J Pharm. 2005;296:122–32.

    Article  PubMed  CAS  Google Scholar 

  26. Ge Z, Zhang XX, Gan L, Gan Y. Redispersible, dry emulsion of lovastatin protects against intestinal metabolism and improves bioavailability. Acta Pharmacol Sin. 2008;29:990–7.

    Google Scholar 

  27. Gershanik T, Benzeno S, Benita S. Interaction of a self-emulsifying lipid drug delivery system with the everted rat intestinal mucosa as a function of droplet size and surface charge. Pharm Res. 1998;15:863–9.

    Article  PubMed  CAS  Google Scholar 

  28. Giraud M-N, Motta C, Romero JJ, Bommelaer G, Lichtenberger LM. Interaction of Indomethacin and Naproxen with gastric surface-active phospholipids: A possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). Biochem Pharmacol. 1999;57:247–54.

    Article  PubMed  CAS  Google Scholar 

  29. Ghyczy M, Hoff E, Gareiß J. Gastric mucosa protection by phospha-tidylcholine (PC). Prog Drug Deliv Syst. 1996;V:49–51.

    Google Scholar 

  30. Guo J, Ping Q, Chen Y. Pharmacokinetic behavior of cyclosporin A in rabbits by oral administration of lecithin vesicle and Sandimmun Neoral. Int J Pharm. 2001;216:17–21.

    Article  PubMed  CAS  Google Scholar 

  31. Hauss DJ, Fogal SE, Ficorilli JV, Price CA, Roy T, Jayaraj AA, Keirns JJ. Lipidbased delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998;87:164–9.

    Google Scholar 

  32. He J, Hou S, Lu W, Zhu L, Feng J. Preparation, pharmacokinetics and body distribution of silymarin-loaded solid lipid nanoparticles after oral administration. J Biomed Nanotechnol. 2007;3:195–202.

    Article  CAS  Google Scholar 

  33. Holm R, Mullertz A, Pedersen GP, Kristensen HG. Comparison of the lymphatic transport of halofantrine administered in dispersed systems containing three different unsaturated fatty acids. Pharm Res. 2001;18:1299–304.

    Article  PubMed  CAS  Google Scholar 

  34. Hu SX, Soll R, Yee S, Lohse DL, Kousba A, Zeng B et al. Metabolism and pharmacokinetics of a novel Src kinase inhibitor TG100435 ([7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine) and its active N-oxide metabolite TG100855 ([7-(2,6-dichloro-phenyl)-5-methylbenzo[1,2,4] triazin-3-yl]-{4-[2-(1-oxy -pyrrolidin-1-yl)-ethoxy]-phenyl}-amine). Drug. Drug Metab Dispos. 2007;35:929–36.

    Article  PubMed  CAS  Google Scholar 

  35. Iwanaga K, Ono S, Narioka K, Morimoto K, Kakemi M, Yamashita S et al. Oral delivery of insulin by using surface coating liposomes improvement of stability of insulin in GI tract. Int J Pharm. 1997;157:73–80.

    Article  CAS  Google Scholar 

  36. Kamiya S, Yamada M, Kurita T, Miyagishima A, Arakawa M, Sonobe T. Preparation and stabilization of nifedipine lipid nanoparticles. Int J Pharm. 2008;354:242–7.

    Article  PubMed  CAS  Google Scholar 

  37. Katare OP, Vyas SP, Dixit VK. Preparation and performance evaluation of plain proliposomal systems for cytoprotection. J Microencaps. 1991;8:295–300.

    Article  CAS  Google Scholar 

  38. Katsuragi Y, Mitsui Y, Umeda T, Otsuji K, Yamasawa S, Kurihara K. Basic Studies for the Practical Use of Bitterness Inhibitors: Selective Inhibition of Bitterness by Phospholipids. Pharm Res. 1997;14:720–4.

    Article  PubMed  CAS  Google Scholar 

  39. Khoo SM, Shackleford DM, Porter CJ, Edwards GA, Charman WN. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm Res. 2003;20:1460–5.

    Article  PubMed  CAS  Google Scholar 

  40. Kisel MA, Kulik LN, Tsybovsky IS, Vlasov AP, Vorob'yov MS, Kholodova EA et al. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat. Int J Pharm. 2001;216:105–14.

    Article  PubMed  CAS  Google Scholar 

  41. Kiviluoto T, Paimela H, Mustonen H, Kivilaakso E. Exogenous surface-active phospholipid protects necturus gastric mucosa against luminal acid and barrier-breaking agents. Gastroenterology. 1991;100:38–46.

    PubMed  CAS  Google Scholar 

  42. Koo SI, Noh SK. Phosphatidylcholine inhibits and lysophosphatidylcholine enhances the lymphatic absorption of alpha-tocopherol in adult rats. J Nutr. 2001;131:717–22.

    PubMed  CAS  Google Scholar 

  43. Koch A. Nebenwirkungen der Immunsuppression mit Sirolimus®, Cyclosporin A und Kortison im Vergleich mit der Standard-Triple-Drug-Therapie nach Nierentransplantation. Inaugural-Dissertation, Universitätsklinikum Münster, 2005.

  44. Kovarik JM, Mueller EA, van Bree JB, Flückiger SS, Lange H, Schmidt B, Boesken WH, Lison AE, Kutz K. Cyclosporine pharmacokinetics and variability from a microemulsion formulation--a multicenter investigation in kidney transplant patients. Transplantation. 1994;58:658–63.

    Google Scholar 

  45. Kuentz M, Wyttenbach N, Kuhlmann O. Application of a statistical method to the absorption of a new model drug from micellar and lipid formulations - evaluation of qualitative excipient effects. Pharm Dev Technol. 2007;12:275–83.

    Google Scholar 

  46. Lamprecht A, Saumet JL, Roux J, Benoit JP. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int J Pharm. 2004;278:407–14.

    Article  PubMed  CAS  Google Scholar 

  47. Lanza FL, Marathi UK, Anand BS BS, Lichtenberger LM. Clinical trial: comparison of ibuprofen-phosphatidylcholine and ibuprofen on the gastrointestinal safety and analgesic efficacy in osteoarthritic patients. Aliment Pharmacol Ther. 2008;28:431–42.

    Article  PubMed  CAS  Google Scholar 

  48. Leigh M, van Hoogevest P, Tiemessen H. Optimising the oral bioavailability of the poorly water-soluble drug cyclosporin A using membrane lipid technology. Drug Deliv Syst. 2001;1:73–7.

    Google Scholar 

  49. Leyck S, Dereu N, Etschenberg E, Ghyczy M, Graf E, Winkelmann J et al. Improvement of gastric tolerance of non-sterodial anti-inflammatory drugs by polyene phosphatidylcholine. Eur J Pharm. 1985;117:35–42.

    Article  CAS  Google Scholar 

  50. Li H, An JH, Park JS, Han K. Multivesicular liposomes for oral delivery of recombinant human epidermal growth factor. Arch Pharm Res. 2005;28:988–94.

    Article  PubMed  CAS  Google Scholar 

  51. Lichtenberger LM, Wang ZM, Romero JJ, Ulloa C, Perez JC, Giraud MN et al. Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterinoic phospholipids: insight into the mechaniam and reversal of NSAID-induced gastrointestinal injury. Nat Med. 1995;1:154–8.

    Article  PubMed  CAS  Google Scholar 

  52. Lichtenberger LM, Romero JJ, Dial EJ. Surface phospholipids in gastric injury and protection when a selective cyclooxygenase-2 inhibitor (Coxib) is used in combination with aspirin. Br J Pharmacol. 2007;150:913–9.

    Article  PubMed  CAS  Google Scholar 

  53. Lichtenberger LM, Romero JJ, Kao YC, Dial EJ. Gastric protective activity of mixtures of saturated polar and neutral lipids in rats. Gastroenterology. 1990;99:311–26.

    PubMed  CAS  Google Scholar 

  54. Lichtenberger LM, Romero JJ, Dial EJ, Moore JE. Naproxen-PC: A GI safe and highly effective anti- inflammatory. Inflammopharmacology. 2009;17:1–5.

    Article  PubMed  CAS  Google Scholar 

  55. Ling SS, Yuen KH, Magosso E, Barker SA. Oral bioavailability enhancement of a hydrophilic drug delivered via folic acid-coupled liposomes in rats. J Pharm Pharmacol. 2009;61:445–9.

    Article  PubMed  CAS  Google Scholar 

  56. Mann JF, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine. 2009;27:3643–9.

    Article  PubMed  CAS  Google Scholar 

  57. Manosroi A, Bauer KH. Effects of gastrointestinal administration of human insulin and Insulin-DEAE Dextran complex entrapped in different compound liposomes on blood glucose in rats. Abstract; 1990.

  58. Masuda K, Horie K, Suzuki R, Takayoshi Y, Hirano K. Oral delivery of antigens in liposomes with some lipid compositions modulates oral tolerance to the antigens. Microbiol Immunol. 2002;46:55–8.

    PubMed  CAS  Google Scholar 

  59. Mehner W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–9.

    Article  Google Scholar 

  60. Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006;11:905–10.

    Article  PubMed  CAS  Google Scholar 

  61. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  PubMed  CAS  Google Scholar 

  62. Muller RH, Lippacher A, Gohla S. Solid lipid nanoparticles (SLN) as carrier system for the controlled release of drugs. Handbook of pharmaceutical controlled release technology. Marcel Dekker., 2000, pp 377–91.

  63. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242:121–8.

    Google Scholar 

  64. Müller RH, Weyhers H, Muhlen AZ. Solid lipid nanoparticles (SLN)-ein neuartiger Wirkstoff-Carrier fur Kosmetika und Pharmazeutika: I. Systemeigenschaften, Herstellung and Scaling up. Pharm Ind. 1997;59:423–7.

    Google Scholar 

  65. Müller RH, Dingler A, Weyhers H. Solid lipid nanoparticles—ein neuartiger Wirkstoffcarrier fur Kosmetika und Pharmazeutika. 3. Mitteilung: Langzeitstabilität und Toxizitat, Anwendung in Kosmetika und Pharmazeutika. Pharm Ind. 1997;59:614–9.

    Google Scholar 

  66. Nakamura T, Tanigake A, Miyanaga Y, Ogawa T, Akiyoshi T, Matsuyama K, Uchida T. The effect of various substances on the suppression of the bitterness of quinine-human gustatory sensation, binding, and taste sensor studies. Chem Pharm Bull (Tokyo). 2002;50:1589–93.

    Google Scholar 

  67. Nicolaos G, Crauste-Manciet S, Farinotti R, Brossard D. Improvement of cefpodoxime proxetil oral absorption in rats by an oil-in-water submicron emulsion. Int J Pharm. 2003;263:165–71.

    Article  PubMed  CAS  Google Scholar 

  68. Nornoo AO, Zheng H, Lopes LB, Johnson-Restrepo B, Kannan K, Reed R. Oral microemulsions of paclitaxel: In situ and pharmacokinetic studies. Eur J Pharm Biopharm. 2009;71:310–7.

    Article  PubMed  CAS  Google Scholar 

  69. Odeberg JM, Kaufmann P, Kroon KG, Höglund P. Lipid drug delivery and rational formulation design for lipophilic drugs with low oral bioavailability, applied to cyclosporine. Eur J Pharm Sci. 2003;20:375–82.

    Article  PubMed  CAS  Google Scholar 

  70. Ogue S, Takahashi Y, Onishi H, Machida Y. Preparation of double liposomes and their efficiency as an oral vaccine carrier. Biol Pharm Bull. 2006;29:1223–8.

    Article  PubMed  CAS  Google Scholar 

  71. Pagonis TA, Koukoulis GN, Hadjichristodoulou CS, Toli PN, Angelopoulos NV. Multivitamins and phospholipids complex protects the hepatic cells from androgenic-anabolic-steroids-induced toxicity. Clin Toxicol. 2008;46:57–66.

    Article  CAS  Google Scholar 

  72. Parnham MJ, Leyck S. PHOSPHOLIPON 100, New use. Drugs Fut. 1988;13:324–5.

    Google Scholar 

  73. Park H-J, Lee C-M, Lee Y-B, Lee K-Y. Controlled release of cyclosporin A from liposomes-in-microspheres as an oral delivery system. Biotech Bioproc Engin. 2006;11:526–9.

    Article  CAS  Google Scholar 

  74. Porter JH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    Article  PubMed  CAS  Google Scholar 

  75. Potluri P, Betageri GV. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Del. 2006;13:227–32.

    Article  CAS  Google Scholar 

  76. Poullain-Termeau S, Crauste-Manciet S, Brossard D, Muhamed S, Nicolaos G. Effect of oil-in-water submicron emulsion surface charge on oral absorption of a poorly water-soluble drug in rats. Drug Deliv. 2008;15:503–14.

    Article  PubMed  CAS  Google Scholar 

  77. Priano L, Esposti D, Esposti R, Castagna G, De Medici C, Fraschini F et al. Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. J Nanosci Nanotechnol. 2007;7:3596–601.

    Article  PubMed  CAS  Google Scholar 

  78. Raffin RP, Colombo P, Sonvico F. Soft agglomerates of pantoprazole gastro-resistant microparticles for oral administration and intestinal release. J Drug Del Sci Tech. 2007;17:407–13.

    CAS  Google Scholar 

  79. Rao R, Squillante 3 rd E, Kim KH. Lipid-based cochleates: a promising formulation platform for oral and parenteral delivery of therapeutic agents. Crit Rev Ther Drug Carrier Syst. 2007;24:41–61.

    PubMed  CAS  Google Scholar 

  80. Rao SV, Agarwal P, Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: II. In vitro transport study. Int J Pharm. 2008;362:10–5.

    Article  PubMed  CAS  Google Scholar 

  81. Rao SV, Yajurvedi K, Shao L. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of protein drugs: III. In vivo oral absorption study. Int J Pharm. 2008;362:16–9.

    Article  PubMed  CAS  Google Scholar 

  82. Rao SV, Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development. Int J Pharm. 2008;362:2–9.

    Article  PubMed  CAS  Google Scholar 

  83. Renou C, Carrière F, Ville E, Grandval P, Joubert-Collin M, Laugier R. Effects of lansoprazole on human gastric lipase secretion and intragastric lipolysis in healthy human volunteers. Digestion. 2001;63:207–13.

    Article  PubMed  CAS  Google Scholar 

  84. Robinson JR. Introduction: Semi-solid formulations for oral drug delivery. Bulletin Technique Gattefossé, 1996;11–13.

  85. Yoo HS, Park TG. Biodegradable nanoparticles containing protein-fatty acid complexes for oral delivery of salmon calcitonin. Pharm Sci. 2004;93:488–95.

    Article  CAS  Google Scholar 

  86. Schote U, Ganz P, Fahr A, Seelig J. Interactions of cyclosporines with lipid membranes as studied by solid-state nuclear magnetic resonance spectroscopy and high-sensitivity titration calorimetry. Pharm Sci. 2002;91:856–67.

    Article  CAS  Google Scholar 

  87. Semalty A, Semalty M, Singh D, Rawat MSM. Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharm. 2009;59:335–44.

    Article  PubMed  CAS  Google Scholar 

  88. Shah NM, Parikh J, Namdeo A, Subramanian N, Bhowmick S. Preparation, characterization and in vivo studies of proliposomes containing Cyclosporine A. J Nanosci Nanotechnol. 2006;6:2967–73.

    Article  PubMed  CAS  Google Scholar 

  89. Soehngen EC. Encapsulation of indomethacin in liposomes provides protection against both gastric and intestinal ulceration when orally administered to rats. Arthr Rheumat. 1987;31:1–10.

    Google Scholar 

  90. Suresh G, Manjunath K, Venkateswarlu V, Satyanarayana V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech 8: Article 24 (2007).

  91. Tabak A, et al. Evaluation of oral TG100435 formulations based on exposure studies in rat and dog. Targegen Inc.; The AAPS Journal Abstract (www.aapsj.org/abstracts/AM_2006/staged/AAPS2006-000603.pdf) 2006.

  92. Takagi S, Toko K, Wada K, Ohki T. Quantification of Suppression of Bitterness Using an Electronic Tongue. J Pharm Sci. 2001;90:2042–8.

    Article  PubMed  CAS  Google Scholar 

  93. Takahashi M, Uechi S, Takara K, Asikin Y, Wada KE. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated Curcumin. J Agric Food Chem. 2009;57:9141–6.

    Article  PubMed  CAS  Google Scholar 

  94. Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P. Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J Contr Rel. 2008;125:236–45.

    Article  CAS  Google Scholar 

  95. Thongborisute J, Tsuruta A, Kawabata Y, Takeuchi H. The effect of particle structure of chitosan-coated liposomes and type of chitosan on oral delivery of calcitonin. J Drug Target. 2006;14:147–54.

    Article  PubMed  CAS  Google Scholar 

  96. Tiwari SB, Amiji MM. Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J Nanosci Nanotechnol. 2006;6:3215–21.

    Article  PubMed  CAS  Google Scholar 

  97. Tiwari SB, Shenoy DB, Amiji MM. Nanoemulsion formulations for improved oral delivery of poorly soluble drugs. NSTI-Nanotech 2006, Vol.1.

  98. Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60:702–16.

    Article  PubMed  CAS  Google Scholar 

  99. Trevaskis NL, Porter CJH, Charman WN. The lymph lipid precursor pool is a key determinant of intestinal lymphatic drug transport. J Pharmacol Exp Ther. 2006;316:881–91.

    Article  PubMed  CAS  Google Scholar 

  100. Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie. 2006;61:375–86.

    Google Scholar 

  101. van den Bosch H, Postema NM, de Haas GH, van Deenen LL. On the positional specificity of phospholipase A from pancreas. Biochim Biophys Acta. 1965;98:657–9.

    PubMed  Google Scholar 

  102. Varshosaz J, Minayian M, Moazen E. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J Liposome Res. 2009 Aug 20. [Epub ahead of print].

  103. Wang S, Sun M, Ping Q. Enhancing effect of Labrafac Lipophile WL 1349 on oral bioavailability of hydroxysafflor yellow A in rats. Int J Pharm. 2008;358:198–204.

    Article  PubMed  CAS  Google Scholar 

  104. Werle M, Takeuchi H. Chitosan-aprotinin coated liposomes for oral peptide delivery: development, characterisation and in vivo evaluation. Int J Pharm. 2009;370:26–32.

    Article  PubMed  CAS  Google Scholar 

  105. Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56:1257–72.

    Article  PubMed  CAS  Google Scholar 

  106. Xu H, He L, Nie S, Guan J, Zhang X, Yang X et al. Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits. J Control Rel. 2009;140:61–8.

    Article  CAS  Google Scholar 

  107. Yang L, Geng Y, Li H, Zhang Y, You J, Chang Y. Enhancement the oral bioavailability of praziquantel by incorporation into solid lipid nanoparticles. Pharmazie. 2009;64:86–9.

    PubMed  CAS  Google Scholar 

  108. Yang S, Zhu J, Lu Y, Liang B, Yang C. Body Distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16:751–7.

    Article  PubMed  CAS  Google Scholar 

  109. Yanagawa A, Iwayama T, Saotome T, Shoji Y, Takano K, Oka H et al. Selective transfer of cyclosporin to thoracic lymphatic system by the application lipid microspheres. J Microencapsul. 1989;6:161–4.

    Article  PubMed  CAS  Google Scholar 

  110. Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm. 2006;327:153–9.

    Article  PubMed  CAS  Google Scholar 

  111. Zhang N, Ping Q, Huang G, Han X, Cheng Y, Xu W. Transport characteristics of wheat germ agglutinin-modified insulin-liposomes and solid lipid nanoparticles in a perfused rat intestinal model. J Nanosci Nanotechnol. 2006;6:2959–66.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang Z, Lv H, Zhou J. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Pharmazie. 2009;64:574–8.

    PubMed  CAS  Google Scholar 

  113. Zou W, Sun W, Zhang N, Xu W. Enhanced oral bioavailability and absorption mechanism study of N3-O-toluyl-fluorouracil-loaded liposomes. J Biomed Nanotechnol. 2008;4:90–8.

    CAS  Google Scholar 

  114. van den Bosch H, Postema NM, de Haas GH, van Deenen LL. On the positional specificity of phospholipase A from pancreas. Biochim Biophys Acta. 1965;98:657–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Fricker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricker, G., Kromp, T., Wendel, A. et al. Phospholipids and Lipid-Based Formulations in Oral Drug Delivery. Pharm Res 27, 1469–1486 (2010). https://doi.org/10.1007/s11095-010-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0130-x

KEY WORDS

Navigation