Skip to main content
Log in

Characterization of molecular structures of theaflavins and the interactions with bovine serum albumin

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this study, theaflavins (TF1, TF2A, TF2B and TF3) were prepared from black tea and their interaction with bovine serum albumin (BSA) was explored by fluorescence and CD spectroscopy. The results showed that the structures of theaflavins exhibited significant effects on the binding/quenching process, and the binding affinity increased with the increase of molecular weight of theaflavins and the presence of galloyl moiety. The quenching effects showed a sequence as TF3 > TF2A > TF2B > TF1, demonstrating the important role of the galloyl moiety on the C-3 position of theaflavins. CD spectra indicated that TF3 in high concentration could change the skeleton structure of BSA and induce the unfolding of BSA secondary structure. The present results provide a new perspective for better understanding of the likely physiological fate of theaflavins and help to control the functional characteristics of food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen H, Sang S (2014) Biotransformation of tea polyphenols by gut microbiota. J Funct Foods 7:26–42

    Article  CAS  Google Scholar 

  • Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) A hierarchical scheme for LC-MS identification of chlorogenic acid. J Agric Food Chem 51:2900–2911

    Article  CAS  Google Scholar 

  • Del RD, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  Google Scholar 

  • Kiehne A, Engelhardt UH (1996) Thermospray-LC-MS analysis of various groups of polyphenols in tea. Z Lebensm Unters Forsch 202:48–54

    Article  CAS  Google Scholar 

  • Kroll J, Harshadrai MR, Rohn S (2003) Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds. Food Sci Technol Res 9:205–218

    Article  CAS  Google Scholar 

  • Kuhnert N, Drynan JW, Obuchowicz J, Clifford MN, Witt M (2010) Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Commun Mass Spectrom 24:3387–3404

    Article  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, NewYork

    Book  Google Scholar 

  • Li M, Hagerman AE (2014) Role of the flavan-3-ol and galloyl moieties in the interaction of (−)-epigallocatechin gallate with serum albumin. J Agric Food Chem 62:3768–3775

    Article  CAS  Google Scholar 

  • Li X, Hao Y (2015) Probing the binding of (+)-catechin to bovine serum albumin by isothermal titration calorimetry and spectroscopic techniques. J Mol Struct 1091:109–117

    Article  CAS  Google Scholar 

  • Li D, Zhu M, Xu C, Chen J, Ji B (2011) The effect of Cu2+ or Fe3+ on the noncovalent binding of rutin with bovine serum albumin by spectroscopic analysis. Spectrochim Acta A 78:74–79

    Article  Google Scholar 

  • Li S, Lo CY, Pan MH, Lai CS, Ho CT (2013) Black tea: chemical analysis and stability. Food Funct 4:10–18

    Article  Google Scholar 

  • Li X, Wang G, Chen D, Yan L (2015) β-Carotene and astaxanthin with human and bovine serum albumins. Food Chem 179:213–221

    Article  CAS  Google Scholar 

  • Liu X, Xia W, Jiang Q, Xu Y, Yu P (2015) Binding of a novel bacteriostatic agent—chitosan oligosaccharides–kojic acid graft copolymer to bovine serum albumin: spectroscopic and conformation investigations. Eur Food Res Technol 240:109–118

    Article  CAS  Google Scholar 

  • Menet MC, Sang S, Yang CS, Ho CT, Rosen RT (2004) Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. J Agric Food Chem 52:2455–2461

    Article  CAS  Google Scholar 

  • Ozdal T, Capanoglu E, Altay F (2013) A review on protein–phenolic interactions and associated changes. Food Res Int 51:954–970

    Article  CAS  Google Scholar 

  • Pal S, Saha C, Hossain M, Dey SK, Kumar GS (2012) Influence of galloyl moiety in interaction of epicatechin with bovine serum albumin: a spectroscopic and thermodynamic characterization. PLoS ONE 7:e43321. doi:10.1371/journal.pone.0043321

    Article  CAS  Google Scholar 

  • Pan MH, Lai CS, Wang H, Lo CY, Ho CT, Li S (2013) Black tea in chemo-prevention of cancer and other human diseases. Food Sci Hum Wellness 2:12–21

    Article  Google Scholar 

  • Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53:158–163

    Article  CAS  Google Scholar 

  • Rawel HM, Frey SK, Meidtner K, Kroll J, Schweigert FJ (2006) Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence. Mol Nutr Food Res 50:705–713

    Article  CAS  Google Scholar 

  • Roy AS, Tripathy DR, Chatterjee A, Dasgupta S (2013) The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin. Spectrochim Acta A 102:393–402

    Article  Google Scholar 

  • Simion AM, Aprodu I, Dumitraşcu L, Bahrim GE, Alexe P, Stănciuc N (2015) Exploring the heat-induced structural changes of β-lactoglobulin-linoleic acid complex by fluorescence spectroscopy and molecular modeling techniques. J Food Sci Technol 52:8095–8103

    Article  CAS  Google Scholar 

  • Soares S, Mateus N, Freitas V (2007) Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. J Agric Food Chem 55:6726–6735

    Article  CAS  Google Scholar 

  • Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  Google Scholar 

  • Sułkowska A (2002) Interaction of drugs with bovine and human serum albumin. J Mol Struct 614:227–232

    Article  Google Scholar 

  • Trnková L, Boušová I, Staňková V, Dršata J (2011) Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques. J Mol Struct 985:243–250

    Article  Google Scholar 

  • Wang D, Lu J, Miao A, Xie Z, Yang D (2008a) HPLC-DAD-ESI-MS/MS analysis of polyphenols and purine alkaloids in leaves of 22 tea cultivars in China. J Food Compos Anal 21:361–369

    Article  CAS  Google Scholar 

  • Wang K, Liu Z, Huang JA, Dong X, Song L, Pan Y (2008b) Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent chromatography. J Chromatogr B 867:282–286

    Article  CAS  Google Scholar 

  • Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  • Wei YL, Li JQ, Dong C, Shuang SM, Liu DS, Huie CW (2006) Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy. Talanta 70:377–382

    Article  CAS  Google Scholar 

  • Xu H, Yao N, Xu H, Wang T, Li G, Li Z (2013) Characterization of the interaction between eupatorin and bovine serum albumin by spectroscopic and molecular modeling methods. Int J Mol Sci 14:14185–14203

    Article  Google Scholar 

  • Xu D, Wang Q, Zhang W, Bing H, Li Z, Zeng XX, Sun Y (2015) Inhibitory activities of caffeoylquinic acid derivatives from Ilex kudingcha C. J. Tseng on α-glucosidase from Saccharomyces cerevisiae. J Agric Food Chem 63:3694–3703

    Article  CAS  Google Scholar 

  • Zhang G, Wang A, Jiang T, Guo J (2008) Interaction of the irisflorentin with bovine serum albumin: a fluorescence quenching study. J Mol Struct 891:93–97

    Article  CAS  Google Scholar 

  • Zhao H, Ge M, Zhang Z, Wang W, Wu G (2006) Spectroscopic studies on the interaction between riboflavin and albumins. Spectrochim Acta A 65:811–817

    Article  Google Scholar 

  • Zheng WJ, Wan XC, Bao GH (2015) Brick dark tea: a review of the manufacture, chemical constituents and bioconversion of the major chemical components during fermentation. Phytochem Rev 14:499–523

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant-in-aid from the National Key R&D Program of China (2017YFD0400800), a grant-in-aid from Key Technology R&D Program of Jiangsu Province (BE2013313) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiong Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, S., Xu, D., Saeeduddin, M. et al. Characterization of molecular structures of theaflavins and the interactions with bovine serum albumin. J Food Sci Technol 54, 3421–3432 (2017). https://doi.org/10.1007/s13197-017-2791-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2791-5

Keywords

Navigation