Skip to main content
Log in

Brick dark tea: a review of the manufacture, chemical constituents and bioconversion of the major chemical components during fermentation

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Brick dark tea is a unique brick-formed tea compressed from the older, coarse and rough leaves and branches of Camellia sinensis var. sinensis and C. sinensis var. assamica mainly in Hunan, Sichuan and Yunnan provinces in China. Researches on brick dark tea have become increasingly popular owing to its special health benefits. A series of biochemical reactions occur during the special production—microbial fermentation stage and multitudinous components have been detected. Many of the functional components have been isolated and identified from brick dark tea. In this paper, modern manufacturing techniques about different kinds of brick dark tea and their effects on transformation of the chemical constituents, as well as the chemical components were reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agusta A, Maehara S, Ohashi K et al (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:1565–1569

    Article  CAS  PubMed  Google Scholar 

  • Baderschneider B, Winterhalter P (2001) Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J Agric Food Chem 49:2788–2798

    Article  CAS  PubMed  Google Scholar 

  • Bao GH, Xu J, Hu FL et al (2013) EGCG inhibit chemical reactivity of iron through forming an Ngal-EGCG-iron complex. Biometals 26:1041–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brasseur T, Angenot L (1986) Flavonol glycosides from leaves of Strychnos variabilis. Phytochemistry 25:563–564

    Article  CAS  Google Scholar 

  • Cabrera C, Gimenez R, Lopez MC (2003) Determination of tea components with antioxidant activity. J Agric Food Chem 51:4427–4435

    Article  CAS  PubMed  Google Scholar 

  • Castellano CA, Plourde M, Briand SI et al (2014) Safety of dietary conjugated α-linolenic acid (CLNA) in a neonatal pig model. Food Chem Toxicol 64:119–125

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Yu HS, Lv Y et al (2006) Investigation on the isolation, identification and the biological characteristic of Eurotium Fungi in the Kangzhuan and Qingzhuan brick tea. J Tea Sci 26:232–236

    Google Scholar 

  • Chen YJ, Qi GN, Chen SX et al (2012) Changes in sensory quality and chemical composition of Sichuan brick tea during processing. J Food Chem 33:55–59

    Google Scholar 

  • Chen GM, Huang YY, Liang Y et al (2013) Identification and analysis of “golden-flower” fungus from Fu-Brick tea in Shaanxi province. Hubei Agric Sci 52:345–348

    Google Scholar 

  • Cheng Q, Cai S, Ni D et al (2013) In vitro antioxidant and pancreatic α-amylase inhibitory activity of isolated fractions from water extract of Qingzhuan tea. DOI, Food Sci Technol Res. doi:10.1007/s13197-013-1059-y

    Google Scholar 

  • Chosa H, Toda M, Okubo S et al (1992) Antimicrobial and microbial activities of tea and catechins against Mycoplasma. Kansenshogaku Zasshi 66:606–611

    Article  CAS  PubMed  Google Scholar 

  • Davis AL, Cai Y, Davies AP et al (1996) 1H and 13C NMR assignments of some green tea polyphenols. Magnet Reson Chem 34:887–890

    Article  CAS  Google Scholar 

  • Dong F, Yang ZY, He PM et al (2008) Liquid chromatographic-mass spectrometric analysis of antioxidant compounds from Pu-erh tea. J Chin Inst Food Sci Technol 8:133–141

    CAS  Google Scholar 

  • Drynan JW, Clifford MN, Obuchowicz J et al (2010) The chemistry of low molecular weight black tea polyphenols. Nat Prod Rep 27:417–462

    Article  CAS  PubMed  Google Scholar 

  • Du WH, Peng SM, Liu ZH et al (2012) Hypoglycemic effect of the water extract of Pu-erh tea. J Agric Food Chem 60:10126–10132

    Article  CAS  PubMed  Google Scholar 

  • Duh PD, Yen GC, Yen WJ et al (2004) Effects of Pu-erh tea on oxidative damage and nitric oxide scavenging. J Agric Food Chem 52:8169–8176

    Article  CAS  PubMed  Google Scholar 

  • Farkas L, Vermes B, Nógrádi M (1976) The final structures of robinin and biorobin and their total synthesis. Phytochemistry 15:215–218

    Article  CAS  Google Scholar 

  • Finger A, Engelhardt UH, Wray V (1991) Flavonol glycosides in tea-kaempferol and quercetin rhamnodiglucosides. J Sci Food Agric 55:313–321

    Article  CAS  Google Scholar 

  • Freudenberg K, Weinges K (1958) Catechine, andere hydroxy-flavane und hydroxy-flavene. In: Bonner J, Freudenberg K, Kuhn H et al (eds) Progress in the chemistry of organic natural products, vol 16. Springer, Vienna, pp 1–25

  • Fu RH, Qi GN (2008) Study of microorganism in Kangzhuan tea in Sichuan province. Jiangsu Agric Sci 5:231–234

    Google Scholar 

  • Fu DH, Liu ZH, Huang JA et al (2008) Variations of components of fuzhuan tea during processing. Food Sci 29:64–67

    CAS  Google Scholar 

  • Fu DH, Ryan EP, Huang JA et al (2011) Fermented Camellia sinensis, Fu Zhuan Tea, regulates hyperlipidemia and transcription factors involved in lipid catabolism. Food Res Int 44:2999–3005

    Article  CAS  Google Scholar 

  • Guerin MR, Olerich G (1975) Gas Chromatographic determination of neophytadiene as a measure of the terpenoid contribution to experimental tobacco smoke carcinogenesis. Brown Inst Stud 10:265–273

    CAS  Google Scholar 

  • Harbowy ME, Balentine DA (1997) Tea chemistry. Crit Rev Plant Sci 16:415–480

    Article  CAS  Google Scholar 

  • Hicks MB, Hsieh YH, Bell LN (1996) Tea preparation and its influence on methylxanthine concentration. Food Res Int 29:325–330

    Article  CAS  Google Scholar 

  • Hitoshi I, Toshiyuki W, Yukiko K et al (2009) Quantitation of chafurosides A and B in tea leaves and isolation of prechafurosides A and B from oolong tea leaves. J Agric Food Chem 57:6779–6786

    Article  Google Scholar 

  • Hu ZY, Zhao YL, Liu SC et al (2011) Isolation and identification of dominant microorganisms from different kinds of Fu-brick Tea. Acta Agric Jiangxi 23:60–64

    Google Scholar 

  • Huang YL, Nagai S, Tanaka T et al (2013) Two new oleanane-type triterpenes isolated from Japanese post-fermented tea produced by anaerobic microbial fermentation. Molecules 18:4868–4875

    Article  CAS  PubMed  Google Scholar 

  • Imagawa H, Toryu H, Ozawa T et al (1982) Purification and characterization of nucleases from tea leaves. Agric Biol Chem 46:1261–1269

  • Ji YQ, Xu ZB (1993) The manufacture processing of Fuzhuan brick tea. China Tea 15:16–18

    Google Scholar 

  • Jiang HY, Shii T, Matsuo Y et al (2011) A new catechin oxidation product and polymeric polyphenols of post-fermented tea. Food Chem 129:830–836

    Article  CAS  PubMed  Google Scholar 

  • Jie GL, Lin Z, Zhang L et al (2006) Free radical scavenging effect of Pu-erh tea extracts and their protective effect on oxidative damage in human fibroblast cells. J Agric Food Chem 54:8058–8064

    Article  CAS  PubMed  Google Scholar 

  • Kanegae A, Sakamoto A, Nakayama H et al (2013) New phenolic compounds from Camellia sinensis L. fermented leaves. J Nat Med 67:652–656

    Article  CAS  PubMed  Google Scholar 

  • Kazuma K, Noda N, Suzuki M (2003) Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62:229–237

    Article  CAS  PubMed  Google Scholar 

  • Keller AC, Weir TL, Broeckling CD et al (2013) Antibacterial activity and phytochemical profile of fermented Camellia sinensis (fuzhuan tea). Food Res Int 53:963–969

    Article  Google Scholar 

  • Kumar NS, Rajapaksha M (2005) Separation of catechin constituents from five tea cultivars using high-speed counter-current chromatography. J Chromatogr A 1083:223–228

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Lee BJ, Chung JO et al (2011) 1H NMR-based metabolomic characterization during green tea (Camellia sinensis) fermentation. Food Res Int 44:597–604

    Article  Google Scholar 

  • Li Q, Liu ZH, Huang JN et al (2013) Anti-obesity and hypolipidemic effects of Fuzhuan brick tea water extract in high-fat diet-induced obese rats. J Sci Food Agric 93:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Liang YR, Zhang LY, Lu JL (2005) A study on chemical estimation of Pu-erh tea quality. J Sci Food Agric 85:381–390

    Article  CAS  Google Scholar 

  • Lin Z, Lv HP, Cui WR et al (2006) Study on antioxidative polyphenol compounds in Pu’er tea. J Tea Sci 26:112–116

    CAS  Google Scholar 

  • Lin LZ, Chen P, Harnly JM (2008) New phenolic components and chromatographic profiles of green and fermented teas. J Agric Food Chem 56:8130–8140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ling TJ, Wan XC, Ling WW et al (2010) New triterpenoids and other constituents from a special microbial-fermented tea—Fuzhuan brick tea. J Agric Food Chem 58:4945–4950

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li J, Cai XR et al (2013) Chemical constituents from Qianliang tea. J Chin Pharmaceut Sci 22:427–430

    CAS  Google Scholar 

  • Lu CH, Hwang LS (2008) Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line. Food Chem 111:67–71

    Article  CAS  Google Scholar 

  • Luo LX, Wu XC, Deng YL et al (1998) Variations of main biochemical components and their relations to quality formation during pile-fermentation process of Yunnan Puer tea. J Tea Sci 18:53–60

    CAS  Google Scholar 

  • Luo ZM, Ling TJ, Li LX et al (2012) A new norisoprenoid and other compounds from fuzhuan brick tea. Molecules 17:3539–3546

    Article  CAS  PubMed  Google Scholar 

  • Luo ZM, Du HX, Li LX et al (2013) Fuzhuanins A and B: the B-ring Fission Lactones of Flavan-3-ols from Fuzhuan Brick-Tea. J Agric Food Chem 59:6982–6990

    Article  Google Scholar 

  • Lv HP, Lin Z, Zhong QS et al (2010) Study on the chemical component of E8 fraction from pu-erh tea. J Tea Sci 30:423–428

    Google Scholar 

  • Lv HP, Zhang YJ, Lin Z et al (2013) Processing and chemical constituents of Pu-erh tea: a review. Food Res Int 53:608–618

    Article  CAS  Google Scholar 

  • Mukai D, Matsuda N, Yoshioka Y et al (2008) Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans. J Nat Med 62:155–159

    Article  CAS  PubMed  Google Scholar 

  • Ngouamegne ET, Fongang RS, Ngouela S et al (2008) Endodesmiadiol, a friedelane triterpenoid, and other antiplasmodial compounds from Endodesmia calophylloides. Chem Pharm Bull 56:374–377

    Article  CAS  PubMed  Google Scholar 

  • Ning JM, Zhang ZZ, Wang SP et al (2011) Identification of Pu-erh teas with different storage years by FTRI spectroscopy. Spectrosc Spect Anal 31:2390–2393

    CAS  Google Scholar 

  • Peterson J, Dwyer J, Bhagwat S et al (2005) Major flavonoids in dry tea. J Food Compos Anal 18:487–501

    Article  CAS  Google Scholar 

  • Qi G, Tian H, Liu A et al (2004) Studies on the quality chemical components in Sichuan brick tea. J Tea Sci 24:266–269

    Google Scholar 

  • Sakagami H, Satoh K (1997) Prooxidant action of two antioxidants: ascorbic acid and gallic acid. Anticancer Res 17:221–224

    CAS  PubMed  Google Scholar 

  • Scharbert S, Holzmann H, Hofmann T (2004) Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J Agric Food Chem 52:3498–3508

    Article  CAS  PubMed  Google Scholar 

  • She GM, Zhang XL, Chen KK et al (2005) Content variation of theanine and gallic acid in Pu-er tea. Acta Botanica Yunnanica 27:572–576

    Google Scholar 

  • Sun JY, Yang SB, Xie HX et al (2002) Studies on chemical constituents from fruit of Crataegus pinnatif ida. Chin Tradit Herb Drugs 33:483–486

    CAS  Google Scholar 

  • Sun Y, Meng XH, Zhang HF et al (2008) Research on beneficial microbes in pile fermentation of Pu-erh tea. J Kunming Uni Sci Tech 33:72–75

    CAS  Google Scholar 

  • Takeo T, Uritani I (1966) Tea leaf polyphenol oxidase Part II. Purification and properties of the solubilized polyphenol oxidase in tea leaves. Agric Biol Chem 30:155–163

    Article  Google Scholar 

  • Tanaka T, Matsuo Y, Kouno I (2010) Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci 11:14–40

    Article  PubMed Central  CAS  Google Scholar 

  • Tanikawa N, Yoshida K, Kondo T et al (2011) Urakunoside, a new tetraglycosyl kaempferol from petals of the Wabisuke Camellia cv. tarokaja. Biosci Biotechnol Biochem 75:2046–2048

    Article  CAS  PubMed  Google Scholar 

  • Tao MK, Xu M, Zhu HT et al (2014) New phenylpropanoid-substituted flavan-3-ols from Pu-er ripe tea. Nat Prod Commun 9:1167–1170

    CAS  PubMed  Google Scholar 

  • Tian Y, Xiao Y, Xu KL et al (2011) Changes and correlations of main chemical components during Pu-erh tea processing. J Food Sci 31:20–24

    Google Scholar 

  • Tian LW, Tao MK, Xu M et al (2014) Carboxymethyl- and carboxyl-catechins from ripe Pu-er tea. J Agric Food Chem. doi:10.1021/jf5036959

  • Tomczyk M, Gudej J, Sochacki M (2002) Flavonoids from Ficaria verna Huds. Z Naturforsch C 57:440–444

    Article  CAS  PubMed  Google Scholar 

  • Wan XC (2003) Tea biochemistry. China Agriculture Press, Beijing

    Google Scholar 

  • Wang Y, Ho CT (2009) Polyphenolic chemistry of tea and coffee: a century of progress. J Agric Food Chem 57:8109–8114

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Quinn PJ (1999) Vitamin E and its function in membranes. Prog Lipid Res 38:309–316

    Article  CAS  PubMed  Google Scholar 

  • Wang HF, Li MJ, Liu ZH et al (1991a) Changes of the volatile flavour constituents in Fuzhuan brick tea during the fungus growing process. J Tea Sci 11:81–86

    CAS  Google Scholar 

  • Wang ZS, Tan HW, Zhang Y et al (1991b) Dynamics of major nitrogenous compounds during the primary processing of dark green tea. J Tea Sci 11:29–33

    Google Scholar 

  • Wang ZS, Zhang Y, Tong XL et al (1991c) Dynamics of polyphenols and carbohydrates during the primary processing of dark green tea. J Tea Sci 11:23–28

    CAS  Google Scholar 

  • Wang HF, Provan GJ, Helliwell K (2000) Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci Tech 11:152–160

    Article  CAS  Google Scholar 

  • Wang SM, Kadota S, Liu ZQ et al (2005) Study on the anti-free radical compounds in Tuocha (Camellia sinensis var. assamica). Nat Prod Res Dev 17:131–137

    CAS  Google Scholar 

  • Wang XG, Wan XC, Hu SX et al (2008) Study on the increase mechanism of the caffeine content during the fermentation of tea with microorganisms. Food Chem 107:1086–1091

    Article  CAS  Google Scholar 

  • Wang LY, Cheng H, Zhou J et al (2009a) Chemical fingerprint’s classification of Pu-erh tea by HPLC. J Zhejiang Sci Technol 29:25–30

    Google Scholar 

  • Wang WL, Liu PP, Zhang YP et al (2009b) 2-Hydroxydiplopterol, A new cytotoxic pentacyclic triterpenoid from the halotolerant fungus Aspergillus variecolor B-17. Arch Pharm Res 32:1211–1214

    Article  CAS  PubMed  Google Scholar 

  • Wang WN, Zhang L, Wang S et al (2014) 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity. Food Chem 152:539–545

    Article  CAS  PubMed  Google Scholar 

  • Wu YY, Ding L, Xia HL et al (2010) Analysis of the major chemical compositions in Fuzhuan brick-tea and its effect on activities of pancreatic enzymes in vitro. Afr J Biotechnol 9:6748–6754

    CAS  Google Scholar 

  • Xie GX, Ye M, Wang YG et al (2009) Characterization of pu-erh tea using chemical and metabolic profiling approaches. J Agric Food Chem 57:3046–3054

    Article  CAS  PubMed  Google Scholar 

  • Xu XQ, Yan M, Zhu Y (2005) Influence of fungal fermentation on the development of volatile compounds in the Puer tea manufacturing process. Eng Life Sci 5:382–386

    Article  CAS  Google Scholar 

  • Xu XQ, Mo HZ, Yan MC et al (2007) Analysis of characteristic aroma of fungal fermented Fuzhuan brick-tea by gas chromatography/mass spectrophotometry. J Sci Food Agric 87:1502–1504

    Article  CAS  Google Scholar 

  • Xu AQ, Wang YL, Wen JY et al (2011) Fungal community associated with fermentation and storage of Fuzhuan brick-tea. Int J Food Microbiol 146:14–22

    Article  CAS  PubMed  Google Scholar 

  • Xu YD, Ding Y, Huang JQ et al (2013) Studies on drying process at primary processing of keemun black tea. Chin Agri Sci Bull 27:204–209

    Google Scholar 

  • Xu J, Hu FL, Wang W et al (2015) Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC-MS based metabolomics. Food Chem. http://dx.doi.org/10.1016/j.foodchem.2014.12.045

  • Yamashita Y, Wang LH, Zhang TS et al (2012) Fermented tea improves glucose intolerance in mice by enhancing translocation of glucose transporter 4 in skeletal muscle. J Agric Food Chem 60:11366–11371

    Article  CAS  PubMed  Google Scholar 

  • Yanagida A, Shoji A, Shibusawa Y et al (2006) Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography. J Chromatogr A 1112:195–201

    Article  CAS  PubMed  Google Scholar 

  • Yue Y, Chu GX, Liu XS et al (2014) TMDB: a literature-curated database for small molecular compounds found from tea. BMC Plant Biol 14:243

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang WJ, Liu YQ, Li XC et al (1995) Chemical constituents of “Ecological tea” from Yunnan. Acta Botanica Yunnanica 17:204–208

    CAS  Google Scholar 

  • Zhang Z, Qi GN, Li J et al (2006) Change of contents of main components in production of Sichuan brick tea. J Anhui Agri Sci 34:2515–2516

    Google Scholar 

  • Zhang L, Li N, Ma ZZ et al (2011a) Comparison of the chemical constituents of aged pu-erh tea, ripened pu-erh tea, and other teas using HPLC-DAD–ESI–MS. J Agric Food Chem 59:8754–8760

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ma ZZ, Che YY et al (2011b) Protective effect of a new amide compound from Pu-erh tea on human micro-vascular endothelial cell against cytotoxicity induced by hydrogen peroxide. Fitoterapia 82:261–271

    Google Scholar 

  • Zhang L, Zhang ZZ, Zhou YB et al (2013) Chinese dark teas: postfermentation, chemistry and biological activities. Food Res Int 53:600–607

    Article  CAS  Google Scholar 

  • Zhao LF, Zhou HJ (2005) Study on the main microbes of Yunnan Puer tea during pile-fermentation process. J Shangqiu Teachers College 21:129–133

    Google Scholar 

  • Zhao M, Ma Y, Wei ZZ et al (2011) Determination and comparison of γ-aminobutyric acid (GABA) content in pu-erh and other types of Chinese tea. J Agric Food Chem 59:3641–3648

    Article  CAS  PubMed  Google Scholar 

  • Zheng WJ, Wang SF, Chen XG et al (2004) Identification and determination of active anthraquinones in Chinese teas by micellar electrokinetic capillary chromatography. Biomed Chromatogr 18:167–172

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZH, Yang CR (2000) Chemical constituents from crude green tea, the material of Pu-er tea in Yunnan. Acta Botanica Yunnanica 22:343–350

    CAS  Google Scholar 

  • Zhou HJ, Li JH, Zhao LF et al (2004) Study on main microbes on quality formation of Yunnan Puer tea during pile-fermentation process. J Tea Sci 24:212–218

    Google Scholar 

  • Zhou J, Cheng H, Ye Y et al (2009) Study on the near-infrared spectra fingerprint of Dianqing, Qingbing and Pu-erh tea (Shubing). J Nucl Agric Sci 23:110–113

    CAS  Google Scholar 

  • Zhu XM, Liu QJ (1989) Dark tea. In: University Anhui Agricultural (ed) Manufacture of tea, 2nd edn. China Agriculture Press, Beijing

    Google Scholar 

  • Zhu HT, Yang CR, Li Y et al (2008) Advances on the research of microbes during the post-fermentative process of Pu-er tea. Acta Botanica Yunnanica 30:718–725

    CAS  Google Scholar 

  • Zhu YF, Chen JJ, Ji XM et al (2015) Changes of major tea polyphenols and production of four new B ring fission metabolites of catechins from post-fermented Jing-Wei Fu brick tea. Food Chem 170:110–117

    Article  CAS  PubMed  Google Scholar 

  • Zou YL, Dong BS, Zhang FQ et al (2009) Chemical constituents of pu-erh tea. Yunnan Chem Technol 36:10–13

    CAS  Google Scholar 

  • Zuo YG, Chen H, Deng YW (2002) Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57:307–316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial supports received are gratefully acknowledged. This work was funded by Anhui Agricultural University Talents Foundation (YJ2011-06), and Program for Changjiang Scholars and Innovative Research Team in University IRT1101, the Earmarked Fund for Modern Agro-industry Technology Research System in Tea Industry of Chinese Ministry of Agriculture (nycytx-26), Anhui Major Demonstration Project for Leading Talent Team on Tea Chemistry and Health, and Biotechnology Platform Construction Foundation of Anhui Province (13Z03012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Hu Bao.

Appendix

Appendix

See Table 3.

Table 3 Identified compounds in brick dark tea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, WJ., Wan, XC. & Bao, GH. Brick dark tea: a review of the manufacture, chemical constituents and bioconversion of the major chemical components during fermentation. Phytochem Rev 14, 499–523 (2015). https://doi.org/10.1007/s11101-015-9402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9402-8

Keywords

Navigation